基本的な理論
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/10/31 16:55 UTC 版)
考えられる多くの系統樹のうちある特定の規準を満たすものを最適樹と呼称する。最大節約法においては、最大節約規準により、あるデータセットに対する最短樹が最適樹となる。言い換えると、最大節約法はオッカムの剃刀による考え方である「一番単純な説明が一番優れている」という仮定を根拠としており、進化の事象数が最も少ない系統樹を最良のものとして選択する方法である。最大節約法では、構築された系統樹について進化の数を算出し、樹形を変化させて再び計算を行う。この2ステップを繰り返して、進化の回数が最小となる樹形を探索するのである。 最大節約規準の下では、ある特定の系統樹の樹形における、ある特定の相同形質の集合の配置が最適と考えられる。この最適な配置においては、同形形質の数が最小で、派生形質の数が最大となる。ただし、この基準の下で自由に系統樹を構築するわけではなく、あくまで形成・変形された系統樹を事後的に評価することに注意が必要である。すなわち、同形形質の数を0にするような自由な系統樹の構築は不可能で、ある特定の系統樹の樹形において同形形質の数が最も数が少なくなる、というのみである。 Swofford and Olsen (1990) では、以下の4つの最節約規準が総括されている。 ワグナーの最大節約規準 相同形質の集合内の形質状態の配列は決定されている。すなわち、ある形質状態aから形質状態cへの変化は、間に入る形質状態bを経る。形質状態の消失と再出現は無制限に認められる。 フィッチの最大節約規準 相同形質の集合内の形質状態の配列は決定されていない。すなわち、形質状態aから形質状態cへの変化において、形質状態bが介在する必要はない。形質状態の消失と再出現は無制限に認められる。 ドロの最節約性 一つ一つの共有派生形質が固有に派生する。すなわち、共有派生形質は系統樹上で一度しか発生しない(二次的な消失は認められるが、その場合再度共有派生形質が出現することはできない)。 カミン・ソーカルの最節約性 形質状態の進化は不可逆である(派生形質の二次的な消失はそれ自体が新たな派生形質として解釈される)。 これらの最節約規準を状況に応じて使い分けることで、形質状態の扱い方を変え、個々の形質に対する知見を系統樹推定に反映できる。このバランスを取る規準が、Swofford and Olsen (1990) で提案された総合最節約性である。
※この「基本的な理論」の解説は、「最大節約法」の解説の一部です。
「基本的な理論」を含む「最大節約法」の記事については、「最大節約法」の概要を参照ください。
- 基本的な理論のページへのリンク