ブルーミング現象
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/03/26 01:30 UTC 版)
「指向性エネルギー兵器」の記事における「ブルーミング現象」の解説
レーザー兵器級のレーザー光が大気を通過する時、約1立方cmあたり1メガジュールというエネルギー密度のレーザー光が、大気を温め膨張させる。その結果、大気の密度が小さくなりレーザー光自身を屈折させてしまう。この現象を「ブルーミング現象」と呼び、大気中でのレーザーの集束を乱し焦点の位置をずらしてしまう原因となる。大気中に霧、煙、粉塵がある場合、大気のエネルギー吸収が大きくなりよりハッキリと影響が現れることがある。 ブルーミング現象の発生を抑制する方法はいくつかの方法がある。 一旦、鏡を使ってレーザー光を広げ光線のエネルギー密度を低下させた上で大気を通過させ、目標物表面で焦点を合うようにする。これは、大気を通過中のレーザー光がブルーミング現象を起こさない程度にエネルギー密度を低下させるためである。この方法には大型で、非常に精密かつ壊れ難い反射鏡が必要である。また鏡はサーチライトのように据え付けられ、レーザー照準のために回転させるには大型の装置を必要とする。 フェーズドアレイレーザーを採用する。通常よく用いられるレーザー光の波長では、マイクロメートル級の発振器が数億個ほど必要とされる。製造方法がまだ開発されていないが、カーボンナノチューブの利用が提案されている。フェーズドアレイ方式は理論的には位相共役波(通常の反射と異なり、反射面の角度にかかわらず光線の入射の方向へ位相が揃った光線を反射する)を起こすことができる。フェーズドアレイ方式では鏡面やレンズを必要とせず、平面を構成でき、ビームを拡散する型式のように照準に際して砲塔形状の兵装システムを必要としない。ビームの射角はフェーズドアレイの平面上で形成され、射界は非常に大きな角度まで許容される。 位相共役レーザーシステムを採用する。この兵装システムでは「捜索」もしくは「誘導」レーザーが目標を照射する。目標上にある鏡面に似た働きをする「反射」部分が光を返し、兵装システムの主増幅装置によって探知される。この次に、兵装システムはポジティブ・フィードバックループ(促進的にフィードバックを繰り返す回路)を用い、射入と逆のレーザー波を増幅する。標的は鏡面となっている範囲が蒸発し、その衝撃波によって破壊される。ここでは目標からの反射波がブルーミング現象を通り抜けるため、この現象が回避される。また結果として、光学経路上最良の伝導性が示される。位相共役波の特徴から、ブルーミング現象に起因する歪みは自動的に補正される。試験的な兵装システムがこの方法を用いるとき、通常、「位相共役鏡」を形成するために特別な化学薬品を用いる。大部分の兵装システムでは、兵器として通用する出力レベルにおいて鏡面が劇的に加熱される。 非常に短いパルスを採用する。これはブルーミング現象によってレーザー光が歪められる前に出力を完了する。 単一目標に対し、複数のレーザー群が継続的に低出力で照射する。
※この「ブルーミング現象」の解説は、「指向性エネルギー兵器」の解説の一部です。
「ブルーミング現象」を含む「指向性エネルギー兵器」の記事については、「指向性エネルギー兵器」の概要を参照ください。
- ブルーミング現象のページへのリンク