抗体 抗体の概要

抗体

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/02/29 08:43 UTC 版)

免疫グロブリン(抗体)。色の薄い部分が軽鎖、先端の黒い部分が可変部。適合する抗原が可変部に特異的に結合する。

B細胞は抗原に応じて分化し抗体産生をする。一度分化したB細胞は、大量の抗体を迅速に産生し抗原を除去し、生態を防御する[1]

抗体が抗原へ結合すると、その抗原と抗体の複合体を好中球マクロファージといった食細胞が認識・貪食して体内から除去するように働いたり、リンパ球などの免疫細胞が結合して免疫反応を引き起こしたりする。これらの働きを通じ、脊椎動物の感染防御機構において重要な役割を担っている(無脊椎動物は抗体を産生しない)。

構造

抗体はパパインにより、2つのFab領域と1つのFc領域に分断される。
抗体はペプシンにより、F(ab')2領域と多数のFc断片に分断される。

軽鎖と重鎖

すべての抗体は基本的には同じ構造を持っており、"Y"字型の4本鎖構造(軽鎖重鎖の2つのポリペプチド鎖が2本ずつ)を基本構造としている[注釈 1]。軽鎖(またはL鎖)にはλ鎖とκ鎖の2種類があり、すべての免疫グロブリンはこのどちらかを持つが、分子量は約25,000で共通である。重鎖(またはH鎖)には、γ鎖、μ鎖、α鎖、δ鎖、ε鎖の、構造の異なる5種類があり、この重鎖の違いによって免疫グロブリンの種類(アイソタイプと呼ぶ)が変わる。分子量は50,000〜77,000である。この軽鎖と重鎖がジスルフィド結合(SS結合)で結びついてヘテロダイマーを形成し、さらにこのヘテロダイマーが左右2つジスルフィド結合で結合して "Y"字型のヘテロテトラマーを形成する。

2本の軽鎖同士、あるいは2本の重鎖同士は全く同一のポリペプチド鎖である。

Fc領域とFab領域

"Y"字の下半分の縦棒部分にあたる場所をFc領域 (Fragment, crystallizable) と呼ぶ。左右2つの重鎖からなる。白血球やマクロファージなどの食細胞はこのFc領域と結合できる受容体(Fc受容体)を持っており、このFc受容体を介して抗原と結合した抗体を認識して抗原を貪食する(オプソニン作用)。その他Fc領域は、補体活性化や抗体依存性細胞傷害作用(: Antibody Dependent Cellular Cytotoxicity、ADCC)など、免疫反応の媒介となる。このようにFc領域は抗体が抗原に結合した後の反応を惹起する「エフェクター機能」をもつ。免疫グロブリンのエフェクター機能は、免疫グロブリンの種類(アイソタイプ)によって異なる。

"Y"字の上半分の"V"字の部分をFab領域 (Fragment,antigen binding) と呼ぶ。この2つのFab領域の先端の部分で抗原と結合する。2本の軽鎖と2本の重鎖からなる。重鎖のFab領域とFc領域はヒンジ部でつながっている。左右の重鎖はこのヒンジ部がジスルフィド結合している。パパイヤに含まれるタンパク分解酵素パパインはこのヒンジ部を分解して、2つのFabと1つのFc領域に切断する[3]。またタンパク分解酵素のペプシンはヒンジ部のジスルフィド結合のFc側で切断し、大きなFabが2個くっついたF(ab')2を1つと、多数の小さなFc断片を生成する[4]。Fc断片のうち、CH3領域に相当する最も大きな断片はpFc'と呼ばれる。F(ab')2は、ジスルフィド結合部を含むため、Fabよりも構造が大きいため、Fabと区別するため ab' としている。このF(ab')2は抗原に結合するが、Fc領域を持たないためその後の免疫反応を引き起こさない。このことを利用して抗原の標識に用いられる。

免疫グロブリンの基本構造
(1) Fab領域, (2) Fc領域, (3) 重鎖(N端側から VH、CH1、ヒンジ部、CH2、CH3), (4) 軽鎖(N端側から VL、CL), (5) 抗原結合部位, (6) ヒンジ部

定常領域と可変領域

Fab領域のうち先端に近い半分は、多様な抗原に結合できるように、アミノ酸配列に多彩な変化がみられる。このFab領域の先端に近い半分を可変領域V領域)といい、軽鎖の可変領域をVL領域、重鎖の可変領域をVH領域と呼ぶ。V領域以外のFab領域とFc領域は、比較的変化の少ない領域であり、定常領域C領域)と呼ばれる。軽鎖の定常領域をCL領域と呼び、重鎖の定常領域をCH領域と呼ぶが、CH領域はさらにCH1〜CH3の3つに分けられる。重鎖のFab領域はVH領域とCH1からなり、重鎖のFc領域はCH2とCH3からなる。ヒンジ部はCH1とCH2の間に位置する。

相補性決定領域とフレームワーク領域

可変領域のうち、直接抗原と接触する領域は特に変化が大きく、この超可変領域を相補性決定領域 (complementarity-determining region: CDR) と呼び、それ以外の比較的変異の少ない部分をフレームワーク領域 (framework region: FR) と呼ぶ。軽鎖と重鎖の可変領域に、それぞれ3つのCDR (CDR1 - CDR3) と、3つのCDRを取り囲む4つのFR (FR1 - FR4) が存在する。

種類

抗体は定常領域の構造の違いにより、いくつかのクラスアイソタイプ)に分けられる。多くの哺乳類では、定常領域の構造の違いによりIgG、IgA、IgM、IgD、IgEの5種類のクラスの免疫グロブリンに分類される。これを抗体のアイソタイプという。それぞれのクラスの免疫グロブリンは大きさや生理活性が異なり、例えばIgAは粘膜分泌型の分子であり、IgEは肥満細胞に結合してアレルギー反応を引き起こす。さらにヒトの場合、IgGにはIgG1〜IgG4の4つのサブクラスが、IgAにはIgA1とIgA2の2つのサブクラスがあり、それぞれ少しずつ構造が異なっている。IgM、IgD、IgEにはサブクラスはない。

また、免疫グロブリンは血中や粘膜への分泌型の他、B細胞の細胞表面に結合した型(膜型)のものがある。

ヒト免疫グロブリンの分類

ヒト免疫グロブリンのアイソタイプの構造

重鎖は定常領域の違いにより、γ鎖、μ鎖、α鎖、δ鎖、ε鎖に分けられ、この違いによりそれぞれIgG、IgM、IgA、IgD、IgEの5種類のクラス(アイソタイプ)の免疫グロブリンが形成される。これらの分泌型の免疫グロブリンの他、B細胞表面に結合したものがある。これは、分泌型免疫グロブリンが細胞表面に接着しているのではなく、細胞膜貫通部分をもったものであり、B細胞受容体 (B cell receptor; BCR) と呼ばれる。BCRは2本の重鎖と2本の軽鎖を持ち、細胞膜貫通部分にIgα/Igβヘテロ二量体を持つ。アイソタイプの違いにより、免疫グロブリンの持つ「エフェクター機能」が異なる。

IgG
免疫グロブリンG(IgG)はヒト免疫グロブリンの70-75%を占め、血漿中に最も多い単量体の抗体である。軽鎖2本と重鎖2本の4本鎖構造をもつ。IgG1、IgG2、IgG4は分子量は約146,000であるが、IgG3はFab領域とFc領域をつなぐヒンジ部が長く、分子量も170,000と大きい。IgG1はIgGの65%程度、IgG2は25%程度、IgG3は7%程度、IgG4は3%程度を占める。血管内外に平均して分布する。
IgM
免疫グロブリンM(IgM)はヒト免疫グロブリンの約10%を占める、基本の4本鎖構造が5つ結合した五量体の抗体である。分子量は970,000。通常血中のみに存在し、感染微生物に対して最初に産生され、初期免疫を司る免疫グロブリンである。分子量が大きいので、マクログロブリンとも呼ばれる。マクロは、「大きい」という意味である。
IgA
免疫グロブリンA(IgA)はヒト免疫グロブリンの10-15%を占める。分子量は160,000。分泌型IgAは2つのIgAが結合した二量体の抗体になっている。主に、IgA1とIgA2に分類され、これらは血清鼻汁唾液母乳精液腸液に多く存在している[5]
IgD
免疫グロブリンD(IgD)はヒト免疫グロブリンの1%以下の単量体の抗体である。B細胞表面に存在し、抗体産生の誘導に関与する。
IgE
免疫グロブリンE(IgE)はヒト免疫グロブリンの0.001%以下と極微量しか存在しない単量体の抗体である。IgEが抗原と反応するとヒスタミンの分泌が起きる[6]。寄生虫に対する免疫反応に関与していると考えられるが、寄生虫の稀な先進国においては、特に気管支喘息アレルギーに大きく関与している。「肥満細胞」とも言われるマスト細胞の表面にあるFCεR受容体にIgEが常駐しているが、ここのIgEにさらに抗原が結合する反応によってマスト細胞が活性化され、ヒスタミンなどの分泌物をマスト細胞から放出する[6]。好塩基球にもIgEが存在している。

その他の生物での分類

免疫グロブリンは無脊椎動物には見られず、軟骨魚類以降の脊椎動物で見つかっている。それぞれの生物ごとに複数のクラスの免疫グロブリンを持つが、その種類はごとに違いが見られる[7]。IgMのみが脊椎動物のすべてで共通に見られる。

軟骨魚類
IgMの他にIgW、IgW (long)、IgNARと呼ばれるクラスを持つ
硬骨魚類
IgMとIgD、IgT(IgZ)を持つ
ハイギョ
IgM, IgW, IgW (long) を持つ
爬虫類
IgMの他、IgYと呼ばれるクラスを持つ[8]
両生類アフリカツメガエル
IgMの他、IgXとIgYと呼ばれるクラスを持つ
鳥類ニワトリ
IgM、IgA、IgYを持つ
哺乳類
IgM、IgD、IgG、IgA、IgEの5種類を持つ

また、同じ哺乳類でもサブクラスの種類には種ごとに違いが見られる。例えばヒトIgGのサブクラスがIgG1〜IgG4の4種類であるのに対し、マウスIgGではIgG1, IgG2a, IgG2b, IgG3の4種類である。

関連する話題として、軟骨魚類と硬骨魚類はともにクラススイッチを起こさない[8]。生物のうち免疫グロブリン抗体にてクラススイッチを起こすのは、両生類・爬虫類。鳥類・哺乳類である。

両生類と爬虫類に共通してIgYが見られる[8]。哺乳類と鳥類に共通してIgAが見られる[8]。IgEは哺乳類だけに見られる[8]


注釈

  1. ^ ラクダ科の動物は、重鎖だけで構成されるサイズの小さな抗体(ナノ抗体)を持つことが知られている[2]

出典

  1. ^ 2.抗体産生のしくみ 科学技術振興機構 2021年7月31日閲覧。
  2. ^ Hamers-Casterman, C. et al., "Naturally occurring antibodies devoid of light chains", Nature 363, 446−448 (1993). doi:10.1038/363446a0W.W.ギブズ, 「開発進むナノ抗体医薬」, 日経サイエンス 2006年1月号
  3. ^ Porter RR. "The hydrolysis of rabbit γ-globulin and antibodies with crystalline papain." Biochemical Journal, 73, 1959, p.p. 119-127. PMID 14434282
  4. ^ Nisonoff A, Wissler FC, Lipman LN, Woernley DL. "Separation of univalent fragments from the bivalent rabbit antibody molecule by reduction of disulfide bonds." Archives of biochemistry and biophysics, 89, 1960, p.p. 230-44. PMID 14427334
  5. ^ https://www.perkinelmer.co.jp/assays/tabid/1875/Default.aspx
  6. ^ a b 宮坂昌之ほか『標準免疫学』、医学書院、2016年2月1日 第3版 第2刷、254ページ
  7. ^ Stavnezer J, Amemiya CT. "Evolution of isotype switching" Semin. Immunol. 16, 2006, p.p. 257-275. PMID 15522624
  8. ^ a b c d e 河本宏『もっとよくわかる! 免疫学』、2018年5月30日 第8刷、176ページ
  9. ^ Silverstein AM. "Paul Ehrlich's passion: the origins of his receptor immunology." Cellular Immunology, 194, 1999, p.p. 213-221. PMID 10383824
  10. ^ Edelman GM. "Journal of American Chemical Society", 81, 1959, p.p. 3155.
  11. ^ Edelman GM, Poulik MD. "Studies on structural units of the gamma-globulins." Journal of Experimental Medicine, 113, 1961, p.p. 861-884. PMID 13725659
  12. ^ Burnet FM. "A modification of Jerne's theory of antibody production using the concept of clonal selection." Australian Journal of Science, 20, 1957, p.p. 67-69.
  13. ^ a b Hozumi N, Tonegawa S. "Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions." Proceedings of National Academy of Science of United States of America, 73, 1976, p.p. 3628-3632. PMID 824647
  14. ^ Tonegawa S. "Somatic generation of antibody diversity." Nature, 302, 1983, p.p. 575-581. PMID 6300689
  15. ^ a b c Li Z, Woo CJ, Iglesias-Ussel MD, et al. "The generation of antibody diversity throuth somatic hypermutation and class switch recombination." Gene & Development, 18, 2004, p.p. 1-11. PMID 14724175
  16. ^ Market E, Papavasiliou FN. "V(D)J recombination and the evolution of the adaptive immune system." PloS Biology, 1, 2003, p.p. 24-27. PMID 14551913
  17. ^ Rajewsky K, Forster I, Cumano A. "Evolutionary and somatic selection of the antibody repertoire in the mouse." Science, 238, 1987, p.p. 1088-1094. PMID 3317826
  18. ^ Weill JC, Reynaud CA, Lassila O, Pink JR. "Rearrangement of chicken immunoglobulin genes is not an ongoing process in the embryonic bursa of Fabricius." Proceedings of National Academy of Science of United States of America, 83, 1986, p.p. 3336-3340. PMID 3010290
  19. ^ Weill JC, Reynaud CA. "Rearrangement/hypermutation/gene conversion: When, where and why?" Immunology Today, 17, 1996, p.p. 92 -97. PMID 8808057
  20. ^ Reynaud CA, Anquez V, Dahan A, Weill JC. "A single rearrengement event generates most of the chicken immunoglobulin light chain diversity." Cell, 40, 1985, p.p. 283-291. PMID 3917859
  21. ^ "系統看護学講座 専門基礎① 解剖生理学 人体の構造と機能[1]" 医学書院, p.p. 435.


「抗体」の続きの解説一覧




抗体と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「抗体」の関連用語

検索ランキング

   

英語⇒日本語
日本語⇒英語
   



抗体のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの抗体 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS