五次方程式とは? わかりやすく解説

Weblio 辞書 > 同じ種類の言葉 > 人文 > 関数 > 方程式 > 五次方程式の意味・解説 

五次方程式

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/01/15 15:35 UTC 版)

五次方程式ごじほうていしき英語: quintic equation)とは、次数が5であるような代数方程式のこと。

概要

一般に一変数の五次方程式は

a5 x5 + a4 x4 + a3 x3 + a2 x2 + a1 x + a0 = 0, (a5 ≠ 0)

の形で表現される。

代数学の基本定理によれば、任意の複素数係数方程式は複素数の中に根が存在する。その一方、五次以上の一般の方程式に対する代数的解法は存在しない。すなわち、一般の五次方程式に対して代数的な根の公式は存在しない。もう少し詳しく書くと、五次の一般方程式の根を、その式の各項の係数と有理数の、有限回四則演算及び有限回根号をとる操作の組み合わせで表示することはできない。

これはルフィニアーベルらによって示された(アーベル–ルフィニの定理参照)。 またガロアによって方程式が代数的に解ける条件が裏付けられている(ガロア理論参照)。

なお、代数的ではないが、楕円関数などを用いた根の公式は存在する。

解の公式

五次方程式の解を超越的な手続を許して構成する方法としては、

  • レベル5のモジュラー方程式の解を利用する方法
  • 超幾何級数を利用する方法

の2つが知られている。 前者はエルミートによって、後者はクラインによって導出された[1][2]

エルミートによる解法

五次方程式の解を構成するためには、まず、次の3つの事実を知っておく必要がある。

  • 任意の五次方程式は代数的操作のみによってブリング-ジェラード(Bring-Jerrard)の標準形に変形できる。
  • レベル5のモジュラー方程式の解が具体的に求められる。
  • それらの解のある特定のコンビネーションが五次方程式を満足し、ブリング-ジェラードの標準形と関係付けることができる。

これらを結合することで五次方程式の解を構成することができる[3]

ブリング-ジェラードの標準形

任意の五次方程式

正二十面体的対称性(Icosahedral symmetry

五次方程式を正20面体方程式(60次方程式)に帰着させ、正20面体方程式の解は超幾何関数で示される。

正20面体を二次元球面 S2に内接。 二次元球面 S2リーマン球面(複素射影直線)を同一視。複素射影直線の斉次座標を カテゴリ



五次方程式

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/02/24 01:43 UTC 版)

代数方程式」の記事における「五次方程式」の解説

楕円モジュラー関数用いた解の公式複雑なため、概略とどめるチルンハウス変換英語版)により、五次方程式は x5 − x − A = 0変形される(五次方程式の一般形)。一方楕円関数の 5 次の変換により得られるモジュラスの 4 乗根は、モジュラー方程式呼ばれる六次方程式となる。この方程式は、チルンハウス変換により y5 + y − B = 0 の形に変形される(B は楕円関数種数の 4 乗根代数的表現となる)。すなわち、五次方程式の一般形モジュラー方程式係数同士比較は、四次方程式となる。一方モジュラー方程式の解は、楕円関数2 つ周期比の指数関数用いた無限級数楕円モジュラー関数)で現されるため、楕円モジュラー関数により 五次方程式の公式が得られる

※この「五次方程式」の解説は、「代数方程式」の解説の一部です。
「五次方程式」を含む「代数方程式」の記事については、「代数方程式」の概要を参照ください。

ウィキペディア小見出し辞書の「五次方程式」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ



五次方程式と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「五次方程式」の関連用語











五次方程式のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



五次方程式のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの五次方程式 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの代数方程式 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS