遷移金属化学
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/05/30 09:39 UTC 版)
ヤーン・テラー効果は遷移金属の八面体形錯体で最もよく見られ、特に6配位の銅(II)錯体で顕著である。八面体形遷移金属錯体の5つのd軌道は、結晶場あるいは配位子場によって、三重縮退した t2g 軌道 dxy、dyz、dzx と、二重縮退した eg 軌道 dz2、dx2-y2 に分裂している。 銅(II)錯体の d9 電子配置は、三重縮退した t2g 軌道は全て占められ、二重縮退した eg 軌道は dz2 に2個、dx2-y2 に1個の合計3個の電子で占められている。このような錯体は分子の4回対称軸の1つ(z軸と呼ばれる)を歪め、軌道と電子の縮退を解き、エネルギーを低下させる。この変形によって、t2g 軌道では dxy が不安定化され、dyz、dzx は安定化される。また、eg 軌道では dz2 が安定化され、dx2-y2 は不安定化される。電子配置は (t2g)6 (dz2)2 (dx2-y2)1 となる。t2g 軌道の3つについては、dxy の不安定化と dyz、dzx の安定化の合計は同じ程度である。そのため、変形による t2g 軌道のエネルギーの変化はほとんどない。一方、eg 軌道の2つについては dx2-y2 の不安定化より dz2 の安定化のほうが上回る。そのため、この錯体はz軸方向に伸びた八面体形構造を持つことになる。 この変形は、通常z軸上の配位子との結合を伸ばすが、しばしば短くなる変形も起こる。ヤーン・テラー効果は不安定な構造を予測するが、変形の方向は予測しない。このような結合の伸長が起こると、z軸方向のルイス塩基性配位子の孤立電子対と軌道間の反発が緩和され、錯体のエネルギーが下がる。変形が起こっていない錯体が反転中心をもつなら、変形後もこれは維持される。 ヤーン・テラー効果は、八面体形錯体において eg 軌道が非対称に占有されるときに最も顕著である。すなわち、二重縮退した基底状態を持つ d9、低スピン d7、高スピン d4 錯体である。これは変形に関係する eg 軌道が直接配位子に向いているためで、その結果変形によって大きなエネルギー的安定化をもたらすことができる。厳密に言えば、 三重縮退した t2g 軌道が非対称に占有される d1、d2 錯体でもこの変形は起こるはずであるが、この変形はずっと弱い。t2g 軌道は直接配位子に向いておらず、配位子が遠ざかることによる反発の減少はより小さいからである。同じことが四面体形錯体についても言える。軌道が配位子に向いていないため、変形によって得られる安定化はより少ない。 八面体形錯体におけるヤーン・テラー効果の強さd電子数12345678910高スピン弱 弱 強 弱 弱 強 低スピン弱 弱 弱 弱 強 強 弱:弱いヤーン・テラー効果(非対称に占有された t2g 軌道)、強:強いヤーン・テラー効果(非対称に占有された eg 軌道)、空白:ヤーン・テラー効果は期待されない ヤーン・テラー効果は、無機化合物の UV-VIS 吸収スペクトルのピークの分裂から実験的に示すことができる。これは多くの銅(II)錯体においても明らかである。また、低温での電子スピン共鳴スペクトル中の不対電子スピンの微細構造から、このような錯体の異方性、および配位子との結合の性質についての詳細な情報が得られる。
※この「遷移金属化学」の解説は、「ヤーン・テラー効果」の解説の一部です。
「遷移金属化学」を含む「ヤーン・テラー効果」の記事については、「ヤーン・テラー効果」の概要を参照ください。
- 遷移金属化学のページへのリンク