有限幾何学
有限幾何学(ゆうげんきかがく)とは有限個の点から構成される幾何学の体系である。例えばユークリッド幾何学は有限幾何学でない。ユークリッド空間における「線」は無限に多くの(実際は実数と同じ濃度の)「点」を含むからである。 ユークリッド幾何は任意の次元で存在することと同様に、有限幾何も任意の(有限)次元で存在する。ただし、ユークリッド幾何とは異なり、有限幾何の場合は同じ次元でも各種の異なった(幾何学的)構造が存在し得る。
概要
有限幾何は有限体上の構造と関連したベクトル空間として、線型代数を通じて定義できる。それはガロア幾何とも呼ばれる。または有限幾何は、純粋に組合せ論的に定義することもできる。
多くの場合には(しかしすべてではない)有限幾何はガロア幾何と同じものである。例えば3次元またはそれ以上の次元における任意の有限射影空間は、ある有限体上の射影空間と同型である(有限体上のベクトル空間の射影化)。
そこでこの場合は両者の違いはない。しかし2次元においては、組合せ論的に定義された射影平面で、有限体上の射影空間と同型にならないようなもの、いわゆる非デザルグ平面が存在する。そこでこの場合は両者は異なるものである。
有限平面
次の注意は有限「平面」のみに適応できる。
有限平面幾何にはアフィン平面幾何と射影平面幾何の二種類がある。アフィン幾何においては平行線は通常の意味で使われる。これに対し、射影幾何においては任意の二つの直線がただひとつの交点をもつ、すなわち平行線は存在しない。有限アフィン平面幾何と有限射影平面幾何は、どちらも簡単な公理系によって構成される。
有限アフィン平面
アフィン平面幾何は、空でない集合 ただ4点のみを含むもっとも単純なアフィン平面は位数2のアフィン平面と呼ばれる。3点は同一直線上にないので、任意の点の対がただひとつの直線を定める。そしてこの平面は6直線を含む。 これは互いに交わらない辺を「平行」と見なした四面体に対応する。あるいは向かい合う2辺だけではなく2つの対角線も「平行」と見なした正方形にも対応する。
さらに一般的に、位数 有限射影平面は、空でない集合 最初の二つの公理は、点と直線の役回りが入れ代わっていることをのぞけばほとんど同一である。これは射影平面幾何に対して、この幾何で真であるような命題は、点と直線あるいは直線と点を入れ換えても真である、という意味での双対原理を示唆する。
第三の公理は、4点の存在を要求するだけだが、最初の二つの公理を満たすためには少なくとも7点が必要である。
有限射影平面のもっとも簡単な例は、7点と7直線を持ち、各点が3直線の上にあり、各直線が3点を含むようなものである。この特殊な有限射影平面は、ファノ平面とも呼ばれる。
この平面から任意の一つの直線とその直線が含む点を取り除くと、位数2のアフィン平面になる。このためファノ平面は、位数2の射影平面と呼ばれる。
一般的に位数nの射影平面は 図1の3-空間はそのような空間の一つであり、この空間における全ての点、直線、平面は公理P-1からP-8を満たしている。
これはまた、体有限射影平面
関連項目
参考文献
- Bruck, R.H.; Ryser, H.J. (1949), “The nonexistence of certain finite projective planes”, Canadian Journal of Mathematics 1 (1): 88–93
- Lam, C. W. H. (1991), “The Search for a Finite Projective Plane of Order 10”, American Mathematical Monthly 98 (4): 305–318 2010年11月30日閲覧。
- Veblen, Oswald; Bussey, W. H. (1906), “Finite projective geometries” (PDF), Transactions 7 (2): 241-259, doi:10.2307/1986438 2010年12月2日閲覧。
- Hirschfeld, James (1998), Projective Geometries over Finite Fields (2 ed.), Oxford University Press, ISBN 0198502958
- Margaret Lynn, Batten (1986), Combinatorics of Finite Geometries, Cambridge University Press, ISBN 0521267641
- Peter, Dembowski (1997), Finite Geometries, Springer, ISBN 3540617868
- Eves, Howard (1972), A Survey of Geometry (Revised edition ed.), Allyn and Bacon Inc., ISBN 0205032265
- Meserve, Bruce E (1983), Fundamental Concepts of Geometry, Addison-Wesley Mathematics Series, New York: Dover Publications,, ISBN 0486634159
- Burkard, Polster (1999), “Yea Why Try Her Raw Wet Hat: A Tour of Projective the Smallest Space”, Mathematical Intelligencer 21 (2): 39-43, doi:10.1007/BF03024845 2010年11月30日閲覧。
- 平峰豊「有限射影平面概観 (群論とその周辺 : 総括と展望)」『数理解析研究所講究録』第1214巻、京都大学数理解析研究所、2001年6月、46-61頁、CRID 1050001335515136256、hdl:2433/41170、ISSN 1880-2818、2024年1月11日閲覧。
外部リンク
- Weisstein, Eric W. "finite geometry". mathworld.wolfram.com (英語).
- Michael Greenberg (2004年9月13日). “Finite Geometries for Those with a Finite Patience for Mathematics” (PDF). 2004 Summer Undergraduate Research Experience Program.. The Courant Institute of Mathematical Sciences, New York University. 2010年12月1日閲覧。
- Juergen Bierbrauer (2004年4月19日). “Finite geometry” (PostScript). Lecture Notes MA 5980. Department of Mathematical Sciences Michigan Technological University. 2010年12月1日閲覧。
- Research Group Incidence Geometry. “Links”. Ghent University. 2010年12月1日閲覧。 有限幾何に関するWeb上の資料へのリンク集。
- Joe Malkevitch (2006年9月). “Finite Geometries?”. Feature Column. American Mathematical Society. 2010年12月1日閲覧。有限幾何の歴史概要
- “Galois Geometry and Generalized Polygons”. The University of Ghent (1998年4月). 2010年12月1日閲覧。 ガロア幾何と一般化多面体の集中講義録。
- Carnahan, Scott (2007-10-27), “Small finite sets”, Secret Blogging Seminar 2010年12月1日閲覧。 ジャン=ピエール・セールによる、小さな有限集合上の標準幾何性についてのノート
- “Finite Geometry Problem Page”. Washington and Lee University (2001年). 2010年12月1日閲覧。問題を通じて学ぶ有限幾何。
有限幾何
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/12/05 03:40 UTC 版)
重要な例は有限幾何である。例えば、有限平面において、Xは点の集合、Yは線の集合である。高次元の有限幾何において、Xは点の集合、Yは空間全体の次元よりも1つ小さな部分空間(超平面)の集合かもしれない。あるいは、より一般的には、包含として定義されるincidenceを持つ、Xはある次元dの全ての部分空間の集合、yは別の次元eの全ての部分空間の集合かもしれない。
※この「有限幾何」の解説は、「接続行列」の解説の一部です。
「有限幾何」を含む「接続行列」の記事については、「接続行列」の概要を参照ください。
- 有限幾何のページへのリンク