円分体とは? わかりやすく解説

円分体

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/02/18 06:16 UTC 版)

円分体 (えんぶんたい、: cyclotomic field) は、有理数体に、1 の 乗根 を添加した代数体である。円分体およびその部分体のことを円体ともいう。

以下において、特に断らない限り、 とする。

性質

  • 3 以上の整数 m に対して、円分体 拡大次数 は、 である。但し、オイラー関数である。
  • 任意の円分体は、ガロア拡大体であり、ガロア群は、アーベル群である。
  • 3 以上の整数 m に対して、 ( は、相異なる素数素因数分解すると、
は、合成体であり、
が成立する。また、円分体 で分岐する有理素数[注釈 1]は、 に限る。
  • である。この を、最大実部分体または実円分体という。
  • 一意分解整域となる円分体 )[注釈 2]は、m が 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 24, 25, 27, 28, 32, 33, 35, 36, 40, 44, 45, 48, 60, 84 の場合だけである。
    • 特に、23 以上の素数 p に対しては、円分体 は一意分解整域でない。
  • 類数が 2 である円分体 ) は、m = 39, 56 だけである。
  • 円分体 に含まれる代数的整数の集合は、 である。

円分体の判別式

m を 3 以上の整数として、円分体を とする。

(1) m が素数のとき

K判別式は、 である。

(2) (p は素数、h は 2 以上の整数)のとき

K の判別式は、 である。但し、

(3) ( は相異なる素数、 であるときには

円分体 の判別式を とすると、 K の判別式は、

である。

アーベル拡大体の埋め込み

クロネッカー=ウェーバーの定理 (Kronecker-Weber's theorem)

K が有理数体上のアーベル拡大体のとき、ある整数 が存在して、

となる。

例えば、二次体はアーベル拡大体であるので、クロネッカー=ウェーバーの定理より、ある円分体の部分体になる。

クロネッカー=ウェーバーの定理は、基礎体が有理数体であるときを考えているが、基礎体を虚二次体にしたときも、同様なことが成立するかを問うたのが、クロネッカーの青春の夢である。

円分体と初等整数論

フェルマーの最終定理

素数 p に対して、

の左辺を、 上で分解すると、

となる。 ラメ (G. Lamé)、コーシー (A. Cauchy)らは、上記左辺を考察し、フェルマーの最終定理が成立することを証明したと発表した。しかし、クンマー (E. E. Kummer)は、彼らの証明は、左辺の分解が一意的であることが前提になっており、 のとき、それが成立しないことを示した。 そのため、 (円分体の性質にある様に、23 以上の全ての素数) の場合、別の方法をとる必要がある。

クンマーは、素元の分解が一意でなくとも、ある性質をもつ素数である場合、彼らの証明のアイデアを生かしながら、フェルマーの最終定理が成立することを証明した。

クンマーにより考察された素数は、以下の性質を持ち、正則素数と呼ばれる。

  • 素数 p は、円分体 類数を割り切らない。

正則素数に対しては、以下の補題が成立し、クンマーは、この補題を用いて、ベキが正則素数の場合のフェルマーの最終定理を証明した。

クンマーの補題

素数 p が正則素数であれば、円分体 の単数 ε を、 となる有理整数 a が存在するようにとると、 の単数 が存在して、 と表される。

正則素数についての詳細は、正則素数 を、フェルマーの最終定理については、フェルマーの最終定理を参照のこと。

平方剰余の相互法則

ガウス (C. F. Gauss)は、今日、ガウス和と呼ばれる1のベキ根の指数和を考察することにより、平方剰余の相互法則第1補充法則第2補充法則を示した[注釈 3]。さらに、 上のガウス和を考察することで、3次、4次剰余の相互法則を得ることができる。クンマーは、円分体に対する深い考察により、高次のベキの剰余に関する相互法則を与えた。 高次ベキの剰余の相互法則は、その後、フルトヴェングラー (P. Furtwängler)により全ての素数に対して与えられ、さらに、類体論の結果を用いて、高木、アルティン (E. Artin)、ハッセ (H. Hasse)らにより、より一般の形での相互法則が得られた。

円分体の類数

円分体の類数の性質

以下において、p を奇素数とする。

円分体 の類数を 、最大実部分体 の類数を とすると、 ( は有理整数)と表すことができる。 このとき、第1因子または相対類数第2因子または実類数という。

第1因子については、以下の様な性質がある。

  • 素数 p に対して、p を割り切る必要十分条件は、p が第1因子を割り切ることである。
つまり、第1因子が p で割り切れないならば、p は正則素数である。
この性質により、第1因子はフェルマーの最終定理との関連で多くの研究がなされている。
  • 素数 p に対して、p が第1因子を割り切る必要十分条件は、 が、 を割り切る様な整数 k が存在することである。
  • が奇数であるならば、 は奇数である。

クンマーは、第1因子の増大度に対して、 と予想した。 但し、[注釈 4]

この予想が成立するかは不明であるが、例えば、以下のことが知られている。

第2因子に対しては、以下の様な性質がある。第1因子よりも取り扱いが難しいため、第2因子の性質はあまり分かっていない。

  • q を素数とし、 とする。 が素数であるならば、 である。

ヴァンディヴァー (H. S. Vandiver)は、p を割り切らないと予想した(ヴァンディヴァー予想)。現在でも、この予想が正しいかは不明である[2]

円分体の類数公式

円分体の類数を求めるには、 より、第1因子と第2因子を求めればよい。[注釈 5]

  • 第1因子
ここで、
S は、 を満たす、法 m に関する指標の集合とする。
特に、m が素数 p の場合、以下の形で表される。
m が素数のとき、以下の様な式がある。
ここで、η は、1 の原始 乗根とし、
但し、g を、法 p に対する原始根としたとき、 に対して、 は、 を満たす正整数とする。
  • p の倍数ではない整数 r に対して、 を、 を満たすようにとる。
また、 を、 を満たすようにとる。
[注釈 6]とおくと、
である。
  • 第2因子
ここで、R は、単数基準T は、 を満たす、法 m に関する指標のうち、単位指標ではない指標の集合とする。
特に、m が素数 p の場合、以下の形で表される。
ここで、η は、1 の原始 乗根、g は、法 p に対する原始根とする。
m が素数のとき、以下の様な式がある。
  • に対して、 [注釈 7] とおく。
g を法 p に関する原始根とし、 とおく。
また、σ を、 を満たす、 の生成元とする。
とおくと、
但し、R は、の単数基準とする。

脚注

[脚注の使い方]

注釈

  1. ^ 有理整数である素数のこと。
  2. ^ としたとき、 であるので、 としてよい。
  3. ^ この証明は、ガウスによる4番目の証明である。(1805年8月30日に証明)[1]
  4. ^ が成立するので、ディリクレのL関数の積が 1 に収束することと同値である。
  5. ^ 実際は、円分体に対して、直接類数公式で求めるのが普通である。
  6. ^ マイレ(Maillet)の行列という。
  7. ^ δk は、 の正の実数である単数であり、クンマー単数または円単数と呼ばれる。

出典

参考文献

  • 足立恒雄 『フェルマーの大定理 整数論の源流』筑摩書房〈ちくま学芸文庫 ア24‐1 Math & Science〉、2006年9月。ISBN 978-4-480-09012-6 
  • ガウス, J. C. F. 著、高瀬正仁 訳 『ガウス数論論文集』筑摩書房〈ちくま学芸文庫 カ33-1 Math & Science〉、2012年7月。ISBN 978-4-480-09474-2 
  • ガウス, J. C. F. 著、高瀬正仁 訳 『ガウスの《数学日記》』日本評論社、2013年8月。ISBN 978-4-535-78584-7 
  • 河田敬義 『数論 古典数論から類体論へ』岩波書店、東京、1992年4月。ISBN 978-4-00-005516-1 
  • 倉田令二朗 『平方剰余の相互法則 ガウスの全証明』日本評論社、東京、1992年10月。ISBN 978-4-535-78192-4 
  • 高木貞治 『代数的整数論』(第2版)岩波書店、東京、1971年4月。ISBN 978-4-00-005630-4 
  • 高瀬正仁 『ガウスの数論 わたしのガウス』筑摩書房〈ちくま学芸文庫 タ31-2〉、2011年3月。ISBN 978-4-480-09366-0 
  • ノイキルヒ, J. 著、梅垣敦紀 訳 『代数的整数論』足立恒雄(監修)、シュプリンガー・フェアラーク東京、東京、2003年12月。ISBN 978-4-431-70901-5 
    • ノイキルヒ, J. 著、梅垣敦紀 訳 『代数的整数論』足立恒雄(監修)、丸善出版、東京、2012年9月。ISBN 978-4-621-06287-6 
  • ボレビッチ, Z. I.、シャハレビッチ, I. R. 著、佐々木義雄 訳 『整数論』 (下)、吉岡書店、京都〈数学叢書〉、1972年。 
    • ボレビッチ, Z. I.、シャハレビッチ, I. R. 著、佐々木義雄 訳 『整数論』 (下)(POD版)、吉岡書店、京都〈数学叢書 19〉、2000年8月。ISBN 978-4-8427-0287-2 
  • リーベンボイム, P. 著、吾郷博顕 訳 『フェルマーの最終定理 13講』(第2版)共立出版、東京、1989年2月。ISBN 978-4-320-01415-2 
  • Masley, J. M. (1975), “Solution of the class number two problem for cyclotomic fields”, Invent. Math. 28: 243-244, MR369319 Zbl 0296.12003 doi:10.1007/BF01425560 

関連項目

外部リンク


円分体

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/04 06:01 UTC 版)

アルティン相互法則」の記事における「円分体」の解説

m (>1) を奇数もしくは、4 の倍数とし、ζm を 1の原始 m乗根とし、L = Q(ζm) を m次の円分体とする。ガロア群 Gal(L/Q) は (Z/mZ)× と次の写像によって同一視することができる。σを σ ( ζ m ) = ζ m a σ . {\displaystyle \sigma (\zeta _{m})=\zeta _{m}^{a_{\sigma }}.} により与えられる aσ にうつす。L/Q の導手は (m)∞ であり、 m と素なイデアル (n) 上のアルティン写像は、単純に (Z/mZ)× の元 n (mod m) である。

※この「円分体」の解説は、「アルティン相互法則」の解説の一部です。
「円分体」を含む「アルティン相互法則」の記事については、「アルティン相互法則」の概要を参照ください。

ウィキペディア小見出し辞書の「円分体」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「円分体」の関連用語

円分体のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



円分体のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの円分体 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaのアルティン相互法則 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS