他の検出方法
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/08 09:06 UTC 版)
「ケプラー (探査機)」の記事における「他の検出方法」の解説
候補が本当の惑星であることをさらに証明することで、偽陽性を排除するのに役立ついくつかの異なる太陽系外惑星の検出方法が存在する。ドップラー分光法と呼ばれる方法の1つは、地上望遠鏡からのフォローアップ観測を必要とする。この方法は、惑星が巨大であるか、比較的明るい恒星の周りを公転している場合に適している。現在の分光計は、比較的薄暗い恒星の周りの小さな質量を持つ惑星候補を確認するには不十分であるが、この方法は、ターゲットとなる恒星の周りに追加の巨大なトランジットを起こさない惑星候補を発見するために使用することができる。 多惑星系では、連続するトランジット間の期間を見て、トランジットのタイミング変動によって惑星を確認できることが多く、惑星が互いに重力的に摂動している場合に異なる可能性がある。これは、恒星が比較的遠い場合でも、比較的低質量の惑星を確認するのに役立つ。トランジットタイミングの変動は、2つ以上の惑星が同じ惑星系に属していることを示している。この方法でトランジットを起こさない惑星が発見される事例も存在する。 周連星惑星は、他の惑星によって重力的に乱された惑星よりも、トランジット間のタイミング変動がはるかに大きい。その公転周期の時間も大きく異なる。周連星惑星のトランジットタイミングと持続時間の変動は、他の惑星ではなく、主星の軌道運動によって引き起こされる。また、惑星が十分に大きいと、恒星の軌道周期がわずかに変動する可能性がある。非周期的なトランジットのためにこのような惑星を見つけるのが難しいにもかかわらず、周連星惑星のトランジットタイミングのパターンは、食連星や背後にある恒星系によって模倣することができないので、それらを確認することははるかに簡単である。 トランジットに加えて、恒星の周囲を公転する惑星は、月のように反射光の変化を受け、完全から新しいものに至るまで、そして再び段階を経る。ケプラーは全体の光から惑星の光を分離できないため、複合された光だけを見て、主星の明るさは周期的に各軌道上で変化しているように見える。近い巨大惑星を見るために必要な光度計の精度は、太陽型恒星を横切って通過する地球サイズの惑星を検出するのとほぼ同じであるが、軌道周期が数日以下の木星サイズの惑星は、ケプラーなどの比較的高精度な宇宙望遠鏡によって検出できる。長期的には、この方法はトランジット法よりも多くの惑星を見つけるのに役立つ可能性がある。これは、軌道位相による反射光の変化が惑星の軌道傾斜角にほとんど依存せず、惑星が恒星の前を通過する必要がないためである。さらに、巨大惑星の位相関数は、その熱特性と大気の関数でもある可能性もある。したがって、位相曲線は、大気中の粒子の粒子サイズ分布など、他の惑星の特性を制約する可能性がある。 ケプラーの光高度計精度は、ドップラービームや惑星による恒星の形状変形によって引き起こされる恒星の明るさの変化を観測するのに十分な精度であることが多い。これらは、これらの効果があまりにも顕著である場合、恒星や褐色矮星によって引き起こされる偽陽性としてホット・ジュピター候補を排除するために使用することができる。しかし、このような効果が、TrES-2bのような惑星質量の天体によっても検出される場合もある。
※この「他の検出方法」の解説は、「ケプラー (探査機)」の解説の一部です。
「他の検出方法」を含む「ケプラー (探査機)」の記事については、「ケプラー (探査機)」の概要を参照ください。
- 他の検出方法のページへのリンク