ミンコフスキー幾何学とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > ミンコフスキー幾何学の意味・解説 

ミンコフスキー空間

(ミンコフスキー幾何学 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/03/01 01:15 UTC 版)

ミンコフスキー空間(ミンコフスキーくうかん、: Minkowski space)とは、非退化で対称な双線型形式を持つベクトル空間である。ドイツ数学者ヘルマン・ミンコフスキーに因んで名付けられている。アルベルト・アインシュタインによる特殊相対性理論を定式化する枠組みとして用いられる。この特定の設定の下では空間時間を組み合わせた時空を表現するため、物理学の文脈ではミンコフスキー時空とも呼ばれる。

構造

(m,n)-型のミンコフスキー空間 Mm,n は、まず計量を無視して単なるベクトル空間と考えるとm-次元ユークリッド空間n-次元ユークリッド空間直和 Mm,n = EmEn と定義されるものである。

(すなわち、集合としては直積集合 Mm,n = Em×En であり、VMm,n に対して V(m)Em, V(n)En がただ一組存在して順序対として

V=(V(m),V(n))

と表され、加法とスカラー倍は、 a, bR に対して

aV+bW = (aV(m)+bW(m), aV(n)+bW(n))

であり、零ベクトル 0Mm,n は、それぞれの零ベクトル 0(m)Em, 0(n)En の順序対

0=(0(m),0(n))

として定義されるようなものである。)

次元は dim Mm,n = m+n である。

ミンコフスキー計量

直積空間としての (m,n)-型のミンコフスキー空間 Mm,n = Em×En におけるミンコフスキー計量 η(m,n) は、ユークリッド空間 Em, En におけるユークリッド計量を d(m), d(n) として

空間の次元のうち2成分のみ示したミンコフスキー空間の図

ミンコフスキー空間の元(4元ベクトル)はそのミンコフスキー内積の符号によって分類される。4元ベクトル V に関して、

  • ηabVaVb = VaVa < 0であるとき V時間的 であるといわれる
  • ηabVaVb = VaVa > 0 であるとき V空間的であるといわれる
  • ηabVaVb = VaVa = 0 であるとき Vヌル的 (光的) であるといわれる

これらの用語は物理学における相対性理論でミンコフスキー空間が使われることからきている。ミンコフスキー空間内のヌルベクトル全体の集合光円錐を表している。これらの概念は指標系(標準基底の選択)によらずに定義されている。ヌルベクトルについては、二つのヌルベクトルが(ミンコフスキー内積に関して)直交しているならばそれらは平行である、という性質がある。

時間の向き(標準基底の e0)が選ばれると、時間的ベクトルやヌルベクトルを様々なクラスに分けることができる。時間的ベクトルについては

  1. 未来方向時間的: ベクトルは負の時間成分(V0)を持つ
  2. 過去方向時間的: ベクトルは正の時間成分を持つ

と分類でき、ヌルベクトルについては:

  1. ベクトル空間の零元としての零ベクトル:(成分が (0,0,0,0) となる)
  2. 未来方向ヌル: ベクトルは負の時間成分をもつ
  3. 過去方向ヌル: ベクトルは正の時間成分をもつ

と分類できる。空間的ベクトルとあわせて六つのクラスが考えられることになる。

ミンコフスキー空間の正規直交基底は必ず一つの時間的単位ベクトルと三つの空間的単位ベクトルからなっている。正規直交性を外した基底であればほかの組み合わせも可能になり、例えばすべてヌルベクトルからなるような(互いに直交していない)基底をとることができる。

局所平坦時空

厳密にいえば、特殊相対性理論によってミンコフスキー空間をひろがりのある系を記述するために用いることができるのは重力がほとんど無視できる場合のニュートン極限に限られる。重力が無視できない場合には時空は歪み、特殊相対性理論の代わりに一般相対性理論を考えることが必要になる。

しかしながら、等価原理によりそのような場合でも(重力の特異点を除く) 一点の周りの無限小の領域には局所慣性系を敷けることが保証されるので、ミンコフスキー空間でうまく記述できる。抽象的にいえば、重力がある場合には時空はゆがんだ四次元の多様体となり、各点での接空間がミンコフスキー空間となっている、と言い表すことができる。したがってミンコフスキー空間の構造は一般相対性理論においても本質的な役割を果たすことになる。

重力を弱めていった極限では時空は平坦になり、局所的にのみならず大域的にもミンコフスキー空間と見なせるようになる。このことからミンコフスキー空間はしばしば平坦な時空とよばれている。

歴史

ミンコフスキー空間の名前はヘルマン・ミンコフスキーにちなんだものである。ミンコフスキーは1907年ごろに、(アルベルト・アインシュタインによって発展させられていた)特殊相対性理論が時間の次元と空間の三つの次元を組み合わせた四次元の時空を用いることで簡素に説明されることを見いだした。

「空間と時間に関し私がここで展開したいと思っている視点は、実験物理学の土壌から芽生えたものであり、その力強さを内に持っている。この視点は革新的なものであり、これからは空間それ自身であるとか時間それ自身であるとかいったような概念は陰にすぎないところへと消え去っていくことになる。そしてこの両者を合わせたもののみが独立した実在としてあり続けることになる。」 — ヘルマン・ミンコフスキー、1908年

1890年代における双曲四元数の発展によりミンコフスキー空間への道が開かれることになった。実際のところ、数学的にはミンコフスキー空間とは双曲四元数の空間から乗法の情報を忘れて双線形形式

η(p, q) = −(pq* + (pq*)*)/2

(これは双曲四元数の積 pq* によって定まる)のみを残したものと考えることができる。

関連項目

参考文献

外部リンク




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「ミンコフスキー幾何学」の関連用語

ミンコフスキー幾何学のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ミンコフスキー幾何学のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのミンコフスキー空間 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS