ファン・デル・ワールスの状態方程式とは? わかりやすく解説

Weblio 辞書 > 同じ種類の言葉 > 人文 > 関数 > 方程式 > ファン・デル・ワールスの状態方程式の意味・解説 

ファンデルワールスの状態方程式

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/03/24 12:17 UTC 版)

ファン・デル・ワールスの式による等温線

ファン・デル・ワールスの状態方程式(ファン・デル・ワールスのじょうたいほうていしき、英語: van der Waals equation)とは、実在気体を表現する状態方程式の一つである。1873年ヨハネス・ファン・デル・ワールスにより提案された。

ファン・デル・ワールスの状態方程式は、実在気体の理想気体からのずれを二つのパラメータを導入することで表現している。二つのパラメータを導入する簡単な補正ではあるが、ジュール=トムソン効果気相-液相相転移について期待される振る舞いを再現できる上、解析的扱いが易しいため頻繁に用いられる。ただし、あくまで一つの理論モデルであり、厳密に実在気体の振る舞いを表現できる訳ではない。また、二つのパラメータだけで理想気体からのずれを表現しているため、ビリアル方程式のように系統的に近似の精度を上げていく事が出来ない欠点もある。

方程式

ファン・デル・ワールスの状態方程式においては、熱力学温度 Tモル体積 Vm の平衡状態における圧力

実在気体の等温線の模式図

ファン・デル・ワールス方程式の有用性の一つとして、気相-液相間の相転移を表現できることが挙げられる。 熱力学から導かれる制約により等温圧縮率 κT は常に正であり、不等式

が得られる。この不等式が満たされる体積の範囲は、右図の等温線のうち極小点 A と極大点 C の外側の実線の部分である。 このうち、安定的な平衡状態に相当するのは点 F と点 G の外側の青色の実線の部分と、点 F と点 G の間のを直線部分である。 点 F の左側が液相に相当し、点 G の右側が気相に相当する。直線部分は気相と液相が共存する状態である。 緑色の実線部分は準安定な状態であり、点 F から極小点 A までの間は過熱、点 G から極大点 C までの間は過冷却に相当する。 不等式が成り立たない極小点 A と極大点 C の内側の破線部は非物理的な状態である。

臨界定数

ファン・デル・ワールス方程式の臨界点は等温線の極小点 A と極大点 C が接近して消失する点 K を求めることで得られる。ファン・デル・ワールス方程式に基づいて計算される臨界温度 Tc、臨界圧力 pc、臨界体積 Vc は、ファン・デル・ワールス定数 a,b

の関係にある[3]

臨界定数の式を逆に解けば

として臨界定数から状態方程式のパラメータを決定することができる。ここでは係数 R を臨界定数から求められる調整パラメータとして扱っている。 ただし、ファン・デル・ワールス方程式はあくまで近似式であるため、臨界定数から計算した R がモル気体定数と厳密には一致しない[1]R をモル気体定数に固定する場合は、臨界体積が

によって求められるとみなせば、ファン・デル・ワールス定数 a,b

で決定される。

主な気体の臨界定数、およびファンデルワールス定数[3]
気体 Tc / K pc / Pa Vc / m3 mol−1 a / Pa m6 mol−2 b / m3 mol−1
空気 132.5 3.766×106 88.1×10−6 135×10−3 36.6×10−6
ヘリウム He 5.201 0.227×106 57.5×10−6 3.45×10−3 23.8×10−6
水素 H2 33.2 1.316×106 63.8×10−6 24.8×10−3 26.7×10−6
窒素 N2 126.20 3.400×106 89.2×10−6 141×10−3 39.2×10−6
酸素 O2 154.58 5.043×106 73.4×10−6 138×10−3 31.9×10−6
二酸化炭素 CO2 304.21 7.383×106 94.4×10−6 365×10−3 42.8×10−6
水蒸気 H2O 647.30 22.12×106 57.1×10−6 553×10−3 33.0×10−6

還元方程式

臨界定数によって各変数を

によって規格化すると、状態方程式は

となる[4]。この式は、無次元化された温度、圧力、体積により、状態方程式が気体の種類によらず同一の形で表されること[5]を示し、状態方程式を一般化したものとみなすことができる。この式は還元方程式reduced form of equation of state)と呼ばれる。

ファン・デル・ワールス気体

圧力がファン・デル・ワールスの状態方程式に従うとき、内部エネルギーは理想気体と異なり、体積にも依存する。 これは熱力学的状態方程式

から導かれる。 気体の振る舞いは状態方程式だけでは決まらず、熱容量に関する情報が必要である。特に等積モル熱容量が理想気体と同じく定数 cv = cR であるような気体をファン・デル・ワールス気体と呼ぶことがある。

ファン・デル・ワールス気体のモル内部エネルギーは

となり、モルエントロピー

となる。エネルギーと体積を変数として表したエントロピーは完全な熱力学関数であり、ファン・デル・ワールス気体の総ての情報を持っている。

プロット

分子間の引力効果について、気体の1分子が持つ相互作用の有効範囲である体積を V0V0 の物質量を N0 とすると, N0 個の分子から、2つの分子間の相互作用の組み合わせは、

である。個々の分子が容器に及ぼす圧力は、壁と分子の衝突の頻度および分子によって壁に伝えられる運動量に依存する。どちらも分子間力によって減少する。この式から、圧力の減少分は、V0 と密度 n/V に依存することが分かる。ここで

と定義すると、a は分子の種類によって定まる比例定数である。ab と共にファンデルワールス定数と呼ばれる。

修正形

ファン・デル・ワールスの状態方程式を修正した状態方程式が提案されている[6]

  • ベルテローの状態方程式:
  • レドリッヒ・クオンの状態方程式:

脚注

参考文献

  • 佐藤俊、国友孟『熱力学』丸善、1984年。ISBN 4-621-02917-7 
  • 磯直道、上松敬禧、真下清、和井内徹『基礎物理化学』東京教学社、1997年。 
  • G. M. Barrow『物理化学』大門寛、堂免一成 訳(第6版)、東京化学同人、1999年。 ISBN 4-8079-0502-3 

関連項目


ファンデルワールスの状態方程式

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/10/17 01:41 UTC 版)

実在気体」の記事における「ファンデルワールスの状態方程式」の解説

ファン・デル・ワールスは、分子体積分子間力モデル化し、下記のような実在気体状態式提出した1873年)。 ( P + a V 2 ) ( V − b ) = R T {\displaystyle \left(P+{\frac {a}{V^{2}}}\right)(V-b)=RT} これを1molの気体対するファンデルワールスの状態方程式という。この式のaとbは気体種類によって決まる定数である。

※この「ファンデルワールスの状態方程式」の解説は、「実在気体」の解説の一部です。
「ファンデルワールスの状態方程式」を含む「実在気体」の記事については、「実在気体」の概要を参照ください。

ウィキペディア小見出し辞書の「ファン・デル・ワールスの状態方程式」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ



ファン・デル・ワールスの状態方程式と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「ファン・デル・ワールスの状態方程式」の関連用語

ファン・デル・ワールスの状態方程式のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ファン・デル・ワールスの状態方程式のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのファンデルワールスの状態方程式 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの実在気体 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS