ソリトンと逆散乱法
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/26 02:50 UTC 版)
1960年代の遅く、(浅い水の流れで 1次元非散逸流体力学を記述する)KdV方程式において、強い安定性を持ったソリトンが偏微分方程式の局所化された解として発見された。この発見により、これらの方程式を無限次元可積分であるハミルトン系として見なすことで、古典可積分係への関心が復活した。これらの研究は、そのような「可積分」系に非常に豊富なアプローチをもたらし、逆散乱変換(英語版)(inverse scattering transform)やより一般的には逆スペクトルの方法として研究された。(リーマン・ヒルベルト問題(英語版)(Riemann–Hilbert problem)として扱われることも多い。)そこでは、積分方程式の解を通して、フーリエ解析のように局所的な方法が非局所的な線型性へと一般化される。 この方法の基本的なアイデアは、相空間での位置により決定される線型作用素を導入することで、この線型作用素は問題の力学系の下で発展し、(適切に一般化された意味での)スペクトルが不変となるというアイデアである。ある場合には、これが不変量となっていて、運動の積分を完全積分系としている。KdV方程式のような無限自由度の系の場合は、この方法ではリウヴィル可積分性(Liouville integrability)の性質を完全に満たすことはないが、しかし、適切な境界条件を定義すると、スペクトル変換が完全に無視しうる座標への変換であると解釈することができる。そこでは、逆散乱の量が正準座標の二重化した無限集合の半分を構成し、フローがこれらを線型化する。ある意味では、有限個でしかない「位置」変数が角度変数であり、残る部分が非コンパクトとなっているにもかかわらず、このことを作用角度変数への変換とみなすことができる。
※この「ソリトンと逆散乱法」の解説は、「可積分系」の解説の一部です。
「ソリトンと逆散乱法」を含む「可積分系」の記事については、「可積分系」の概要を参照ください。
- ソリトンと逆散乱法のページへのリンク