楕円曲線 代数体上の楕円曲線

楕円曲線

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/03/24 05:51 UTC 版)

代数体上の楕円曲線

有理数体 Q 上、あるいは一般に代数体 K 上定義された曲線 E/K についても接線と割線の方法 (the tangent and secant method) による加法は適用できる。群構造を定義したときにも述べたように、明示公式から、2つの K-有理点 P, Q の和は、PQ を結ぶ直線は K 上に係数を持つゆえ、再び K 上に座標を持つ。このようにして、EK-有理点全体のなす集合は E の複素数点(K が実代数体の場合は実数点)全体のなす群の部分群を成す。この意味において、楕円曲線はアーベル群、すなわち P + Q = Q + P となっている。

高さ

代数体 K 上の楕円曲線上の点に対し、高さが定まる。一般に、次数 d の代数体 K 上の射影空間 上の点 絶対的高さ (absolute height)を

により定める(P を含む K の取り方は一意ではないが、K の取り方によらずに定まる)。ここで K 上の正規化された絶対値をあらわす。また

対数的高さ (logarithmic height) と呼ぶ。

f を代数体 K 上の楕円曲線 E 上定義された有理関数とする。 (ただし P が特異点のときは、 とする)を f に対する高さと呼ぶ。 P が非特異点ならば、これは代数的数 の対数的高さと一致する。特に Px-座標が有理数 x = pqpq互いに素)で xPx-座標を与える関数であるとき、 となる。 任意の定数 C に対し、高さ となる点 は有限個である[3]

f が偶関数であるとき、つまり が任意の点 について成り立つとき、つぎの3つの不等式が成り立つ[4]。 任意の に対し

が成り立つ。ここで右辺の Ef のみに依存し、 PQ には依存しない。 を決めれば、定数 が定まり、

が任意の に対して成り立つ。さらに整数 m を定めれば、任意の に対して

が成り立つ。ここで右辺の のみに依存し、 P には依存しない。つまり h(mP) はおよそ m の二乗に比例して増加する。 E

の形であらわされているときは Px-座標を与える関数 x は偶関数である。

さらに、偶関数 f に対し

で与えられる極限は f に依存せず定まる[5]。この極限を標準的高さ (Canonical height) もしくは ネロン・テイトの高さ: Néron–Tate height という。標準的高さについて、

が成り立ち、さらに

上双線型的である。また任意の f に対し、

が成り立つ。ここで右辺の f のみに依存し、 P には依存しない[6]

有理点の構造

最も重要な結果は、全ての点が、有限個の点から出発する接線と割線の方法(the method of tangents and secants)により生成できるということである。より詳しくは、[7] モーデル・ヴェイユの定理が、群 E(Q)有限生成アーベル群であることを示している。一般に、有理数体以外の代数体 K に対しても群 E(K) は有限生成アーベル群である。 従って、有限生成アーベル群の基本定理により、これは Z のコピーと有限巡回群の有限の直和である。

定理の証明[8]は、2つの部分からなっていて、一つ目は、任意の整数 m > 1 に対し、商群 E(Q)/mE(Q) は有限であること(弱いモーデル・ヴェイユの定理)、二つ目は、有理点 E(Q) の上の高さ関数 h が上記のように定義されているとき、任意の定数より小さな高さを持つ点は E 上に有限個しか存在せず、また h(mP) はおよそ m の二乗に比例して増加するという性質である。

定理の証明は無限降下法の変形の一種で[9]E へのユークリッドの互除法の繰り返しの適用となっている。PE(Q) を曲線の有理点とし、P2P1 + Q1 と書くことにする。ここに Q1E(Q)/2E(Q)P の固定された代表元である。すると P1 の高さは、P の高さのおよそ 14 となる(より一般的には、任意の m > 1 である m2 の替わりとすると、14 の替りに 1m2 となる)。同じように P1P1 = 2P2 + Q2 と書き、P2P2 = 2P3 + Q3 と書き、と繰り返していくと、最終的には P は、点 Qi と、高さが事前に選択したある定数より小さいような点の、整数係数の線型結合となる。弱い形のモーデル・ヴェイユの定理と高さ関数の第二の性質により、P はある決められた有限個の点の整数係数の線型結合として表される。

これまでに、E(Q)/mE(Q) の代表元を決定する一般的なプロセスが知られていないので、この定理は有効である(計算可能である)とは言えない。

E(K) の中の Z のコピーの数、同じことであるが無限位数の独立な点の個数を、E(K)階数あるいはランク英語版と呼ぶ。また、E(K) の中の有限巡回群の有限個の直和となっている部分はE(K)の有限位数の点全体からなる部分群に対応する。そこでこの部分をねじれ部分群といい、E(K)の有限位数の点をねじれ点ともいう。したがって E(K) のランクを r とおくと、E(K) 上の点 をうまくとれば E(K) 上の任意の点 P

とあらわすことができる。ここでTはねじれ点である。このとき、標準的高さは

と二次形式であらわされ、かつこれは正定値である[10]

具体的には小さなランクの楕円曲線しか知られていないにもかかわらず、任意に大きなランクの楕円曲線が存在するとも予想されている。有理数体 Q 上で考えた場合、正確なランクが判明している楕円曲線のうち、最大のランクを持つ楕円曲線は、2009年にノーム・エルキース英語版により発見された

y2 + xy + y = x3x2 + 31368015812338065133318565292206590792820353345x + 302038802698566087335643188429543498624522041683874493555186062568159847

であり、そのランクは 19 である[11]。正確なランクが判明していなくてもよければ、最低でも 28 のランクを持つ楕円曲線が、同じくエルキースによって発見されている。 ランクの決定に関しては、楕円曲線上のゼータ関数によって記述できるというバーチ・スウィンナートン=ダイアー予想が存在する。

E(Q)ねじれ部分群を構成する群について次のことが知られている[12]E(Q) のねじれ部分群は次の15個の群: N = 1, 2, …, 10, 12 に対する Z/NZ あるいは、N = 1, 2, 3, 4 に対する Z/2Z × Z/2NZ のうちの一つである(メーザーのねじれ定理英語版を参照)。また f(x) = x3 + ax2 + bx + c を整数係数の三次式とすると、楕円曲線 y2 = f(x) 上の点 P = (x, y)G に属するならば、P は整数点であり、y2y = 0 でない限り、f の判別式を割り切る[13]ナゲル・ルッツの定理英語版を参照)。 全ての場合の例が知られている。さらに、Q 上で定義されモーデル・ヴェイユ群が同じねじれ群を持つ楕円曲線は、パラメトライズされた族となる。[14]

一般の代数体上の楕円曲線のねじれ部分群について、次のようなことが知られている。ロイック・メレル英語版(Loic Merel)による定理は、与えられた整数 d に対し、同型を除いて、次数英語版 d の数体 K 上に定義された代数曲線の E(K) のねじれ群として作ることが可能な群は、有限個しかない。さらに詳しくは、[15]次数 d の数体 K 上の任意の楕円曲線 E に対し、任意の E(K) の捩れ点は d のみに依存して定まる定数 よりも小さな位数を持つ。この定理は、d > 1 に対して、捩れ点が素数である位数 p の場合は、

となることを言っている。

BSD予想

BSD予想は、クレイ研究所ミレニアム懸賞問題の一つである。予想は、問題を楕円曲線により定義される解析的で数論的な対象に依拠して記述している。

解析側での重要な側面は、複素変数関数である K 上の Eハッセ・ヴェイユのゼータ関数 である。この関数はリーマンゼータ関数ディリクレのL-関数の変形である。有理数体上の楕円曲線の場合、L は全ての素数 p について一つの要素を持つオイラー積として定義される。

整数係数 ai で、

の最小多項式与えられる Q 上の曲線 E に対する法 p での還元は、有限体 Fp 上の楕円曲線を定義する(有限個の例外を除く素数 p で還元された曲線は特異点を持ち、従って楕円曲線にならない。そのような場合を p では E悪い還元英語版(bad reduction)であるという。)

有限体 Fp 上の楕円曲線のゼータ関数は、ある意味で、有限な体の拡大 Fp の中の E の点の数の情報を集める母関数 Fpn である。この母関数は、

で与えられる。[16]

冪の右肩に乗っている指数の和は、対数の展開に似ていて、実際、そのように定義されるゼータ関数は有理関数

である。

よって、Q 上の E のハッセ・ヴェイユのゼータ関数は、全ての素数 p についてのこれらの情報を互いに集めることにより定義される。すなわち、

と定義される。ここに、Ep で良い還元を持つ場合は、ε(p) = 1 であり、そうでない場合は 0 である(良い還元を持たない場合は、ap が上記とは異なる定義となる)。

この積は Re(s) > 3/2 でのみ絶対収束する。ハッセの予想はこの L-関数は全複素平面へ解析接続され、任意の s に対して、L(E, s)L(E, 2 − s) へ関連付ける関数等式を満たすのではないかと言う予想であった。1999年、この予想は、谷山志村予想の証明の結果であることがしめされた。谷山志村予想は、Q 上の全ての楕円曲線はモジュラーであるいう予想であり、このことは、楕円曲線の L-関数は解析接続が知られているモジュラー形式のL-関数であることを意味する。

このことにより、任意の複素数 s での L(E, s) の値についていうことができる。BSD予想は s = 1 での曲線の L-関数の振る舞いへ曲線の数論を関連付ける。さらに詳しくは、s = 1 での L-関数の位数は、E のランクに等しく、楕円曲線に関連するいくつかの量を表すこの点での L(E, s) ローラン級数の主要項であることを予想している。

リーマン予想と良く似ていて、この予想は次の 2つを含む多くの結果を持っている。

  • n を奇数の非平方である整数とする。BSD予想が成立することを前提とすると、n が有理数の辺の長さを持つ直角三角形の面積となる(合同数である)ことは、 を満たす整数 (x, y, z) の三つ組の数が、 を満たす三つ組の数の 2倍であることと同値である。このステートメントは、タネルの定理により n が合同数であることと、楕円曲線 が無限オーダーの有理点を持っていることに関連付ける(BSD予想を前提とすると、L-関数は 1 で零点を持つ)。ここで言っていることの主眼は、条件が簡単に評価されることである。[17]
  • 別な方向としては、ある解析的方法はL-関数の族の臨界帯の中心での 0 のオーダーを見積もることを可能とする。BSD予想を仮定すると、これらの見積もりは、問題の楕円曲線の族のランクについての情報に対応する。例えば、[18] は、一般化されたリーマン予想とBSD予想を想定して、 で与えられる楕円曲線の平均ランクは 2 よりも小さいことが示された。

モジュラー性定理とフェルマーの最終定理への応用

モジュラー性定理は、以前は谷山志村予想としても知られていたが、Q の上の全ての楕円曲線 Eモジュラーであるということであり、言い換えると、楕円曲線のハッセ・ヴェイユのゼータ関数はウェイト 2 でレベル 1 のモジュラー形式のL-関数であるということを言っている。ここに N はアーベル多様体 E導手英語版である。(導手とは、E の判別式 Δ(E) として同じ素数により割ることのできる整数を言う。)言い換えると、Re(s) > 3/2 に対し、L-関数を

の形に書くと、

はウェイト 2 でレベル N の双曲モジュラー形式の新形式英語版(newform)を定義する。N を割らない素数 ℓ に対して、モジュラー形式の係数 a(ℓ) は ℓ に等しい、つまり法 ℓ での最小多項式の解の個数に等しい。

[19] 判別式(と導手)が 37 である楕円関数 の例は、モジュラー形式

に関係付けられている。

ℓ を 37 とは異なる素数とすると、係数の性質を比較することができる。従って、ℓ = 3 とすると法 3 の方程式の解は (0, 0), (0, 1), (2, 0), (1, 0), (1, 1), (2, 1) であり、a(3) = 3 − 6 = −3 である。

この予想は1950年代に主張され、1999年にアンドリュー・ワイルズのアイデアを用いて完全に証明された。彼は1994年に大きな楕円曲線の族についてこの予想を証明した。[20]

予想には様々な定式がある。これらが同値であることを示すことは難しく、20世紀の後半の数論の主要なテーマであった。導手 N の楕円曲線 E のモジュラーリティは、モジュラー曲線 X0(N) から E への、Q 上に定義された非定数の有理写像が存在することも表すことができる。特に、E の点はモジュラー関数によりパラメトライズされる。

例えば、曲線 のモジュラーパラメータ化は [21] により与えられた。

ここでは、上記のように q = exp(2πiz) とする。関数 x(z) と y(z) はウェイト 0 でレベル 37 のモジュラー関数で、言い換えると、それらは上半平面 Im(z) > 0 で定義された有理型で、関数等式

を満たす。また同じことが、ad − bc = 1 かつ 37|c となる全ての整数 a, b, c, d と y(z) について成り立つ。

別な定式化は、一方では楕円曲線に、他方ではモジュラー形式に関連するガロア表現の比較に依拠している。モジュラー形式に関係付けられた定式化は予想の証明に使用された。形式のレベルを扱うこと(と曲線の導手との関係)は特に微妙である。

予想の最も重要な応用はフェルマーの最終定理(FLT)の証明である。素数 p > 5 に対して、フェルマー方程式

は、零ではない整数解を持つとする、つまり、フェルマーの最終定理の反例であるとすると、判別式

の楕円曲線

は、モジュラーではありえない。従って、楕円曲線のこの族(ヘレゴーチ・フライ曲線(Hellegouarch–Frey curves)と呼ぶ)の谷山志村予想の証明は、フェルマーの最終定理を意味する。2つのステートメントを結び付ける証明は、ゲルハルト・フライの1985年のアイデアを基礎にしていて、難しくテクニカルである。1987年にケン・リベットにより出版された。[22]


  1. ^ Silverman 1986, Chapter 3
  2. ^ このことはリーマン面として見ることもできるし、単位元に対応する O をもつ種数 1 の曲線ともみることができ、1次元のアーベル多様体と見ることもできる。
  3. ^ Silverman 1986, Proposition 6.1
  4. ^ Silverman 1986, Theorem 6.2, Corollary 6.4
  5. ^ Silverman 1986, Proposition 9.1
  6. ^ Silverman 1986, Theorem 9.3
  7. ^ Silverman 1986, Theorem 4.1
  8. ^ Silverman 1986, pp. 199–205
  9. ^ See also J. W. S. Cassels, Mordell's Finite Basis Theorem Revisited, Mathematical Proceedings of the Cambridge Philosophical Society 100, 3–41 and the comment of A. Weil on the genesis of his work: A. Weil, Collected Papers, vol. 1, 520–521.
  10. ^ Silverman 1986, Theorem 9.3, Proposition 9.6
  11. ^ Dujella, Andrej. “History of elliptic curves rank records”. 2014年5月13日閲覧。
  12. ^ Silverman 1986, Theorem 7.5
  13. ^ Silverman 1995, Chapter 2
  14. ^ Silverman 1986, Remark 7.8 in Ch. VIII
  15. ^ Merel, L. (1996). “Bornes pour la torsion des courbes elliptiques sur les corps de nombres” (French). Inventiones Mathematicae 124 (1–3): 437–449. doi:10.1007/s002220050059. Zbl 0936.11037. 
  16. ^ 定義は形式的で、定数項を持たないこのべき級数の指数は通常の指数である。
  17. ^ Koblitz 1993
  18. ^ D. R. Heath-Brown, The average analytic rank of elliptic curves, Duke Mathematical Journal 122–3, 591–623 (2004).
  19. ^ 計算は、例えば D. Zagier, ≪ Modular points, modular curves, modular surfaces and modular forms ≫, Lecture Notes in Mathematics 1111, Springer, 1985, 225–248 を参照
  20. ^ A synthetic presentation (in French) of the main ideas can be found in this Bourbaki article of Jean-Pierre Serre. For more details see Hellegouarch 2001
  21. ^ D. Zagier, ≪ Modular points, modular curves, modular surfaces and modular forms ≫, Lecture Notes in Mathematics 1111, Springer, 1985, 225–248
  22. ^ See the survey of K. Ribet ≪From the Taniyama–Shimura conjecture to Fermat's Last Theorem≫, Annales de la Faculte des sciences de Toulouse 11 (1990), 116–139.
  23. ^ Baker 1990, Chapter IV およびSilverman 1986, Chapter IX, Silverman 1992, Chapter V
  24. ^ Silverman 1986, Theorem IX.5.8., due to Baker 1990, Chapter IV, p. 45.
  25. ^ H. M. Stark, ≪ Effective estimates of solutions of some diophantine equations ≫, Acta Arith. 24 (1973), 251--259
  26. ^ T. Nagell, L'analyse indeterminee de degre superieur, Memorial des sciences mathematiques 39, Paris, Gauthier-Villars, 1929, pp. 56–59.
  27. ^ Siksek, Samir (1995), Descents on Curves of Genus I, Ph.D. thesis, University of Exeter, pp. 16–17, http://www.warwick.ac.uk/~masgaj/theses/siksek_thesis.pdf .
  28. ^ Silverman 1986, Chapter 9, Section 5, pp. 262--263
  29. ^ たとえば David 1994, Theorem 2.1, pp. 10
  30. ^ 詳しい議論は、たとえば Stroeker & Tzanakis 1994を参照
  31. ^ Koblitz 1994, p. 158
  32. ^ ヴェイユ予想は、1974年にドリーニュにより解決された。また、ステパノフは代数幾何学を用いない比較的初等的な方法により、有限体上の代数曲線の有理点の個数についてヴェイユの定理ほど強くはないが類似の定理を証明し、楕円曲線の場合にはハッセの評価と同じく が導かれることを示した。Lidl, Niederreiter, 1974, 第5-6章およびSchmidt, 1976, 2004, 第1-2章.
  33. ^ Koblitz 1994, p. 160
  34. ^ Harris, M.; Shepherd-Barron, N.; Taylor, R. (2010). “A family of Calabi–Yau varieties and potential automorphy”. Annals of Mathematics 171 (2): 779-813. doi:10.4007/annals.2010.171.779. 






楕円曲線と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「楕円曲線」の関連用語

楕円曲線のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



楕円曲線のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの楕円曲線 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS