モーデルの定理
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/03/23 19:27 UTC 版)
数学におけるモーデルの定理(モーデルのていり、英: Mordell's theorem)とは、有理数体 Q 上の楕円曲線 E の有理点と無限遠点 O のなすアーベル群 E(Q) が有限生成になる、という定理である。有限生成アーベル群の基本定理から有限生成アーベル群は次に同型であることが知られている。
- この節の正確性に疑問が呈されています。
モーデル・ヴェイユの定理(Mordell–Weil theorem)は、数体 K の上のアーベル多様体 A に対し、A の K-有理点の群 A(K) が、モーデル・ヴェイユ群(Mordell-Weil group)と呼ばれる有限生成アーベル群であるという定理である。A が楕円曲線で K が有理数体 Q の場合をモーデルの定理と言い、1908年頃にアンリ・ポアンカレ(Henri Poincaré)により提示された疑問に答えたもので、1922年にルイス・モーデル(Louis Mordell)により証明された。
接する弦のプロセス(tangent-chord process)(三次曲線(cubic cuve)における加法定理の一種)は、17世紀より知られている。フェルマー(Fermat)のは無限降下法は良く知られていたが、モーデルは(無限降下法の)証明の重要な段階である商群 E(Q)/2E(Q) を証明することに成功した。確かにこの群の有限性は、E(Q) が有限生成であることの必要条件であり、このことはアーベル群のランクが有限であることを意味していて、本質的に難しいことであることが判明している。このことの証明は、E の点の二重性の直接の解析により初めて可能となる。
数年後、アンドレ・ヴェイユ(André Weil)はこの問題を取り上げ、数体上の高い種数を持つ曲線のヤコビ多様体へ一般化し、1928年に彼の博士論文として出版した[2]。一層抽象的な方法が要求され、同一の構造を持つ証明が遂行された。証明の後半は、A(K) の点の「サイズ」の限界を意味するある種類の高さ函数を必要とした。座標の測り方として、高さは対数的であり、従って大まかに言うと、同次座標(homogeneous coordinates)の集合を書き下すことに何デジット必要かという疑問であった。アーベル多様体では、射影多様体として表現されていることから、何の前提も必要ない。
証明の前半も後半も、その後のテクニックの前進により大きく改善され、ガロアコホモロジーでは降下法が適用され、最良の高さ函数は、二次形式であることが研究により示されている。
今後の課題
この節の正確性に疑問が呈されています。未だに解決されていない問題はいくつかある。
- ランクの計算。未だにランクの計算問題に答えることが求められて、いつも有効とは限らない。
- ランクの意味付け、バーチ・スウィンナートン=ダイアー予想を参照。
- 代数曲線 C のヤコビ多様体の中の A とすると、A(K) と C の交叉は無限か?(C = A でなければ、ファルティングス(Faltings)によりファルティングスの定理として証明された。)
- 同じ脈絡で、C が A の無限個の捩れ点を持つことが可能か?(楕円曲線の場合以外は、レノー(Raynaud)によりマーニン・マンフォード予想が証明され、従って無限個の捩れ点を持つことが否定された。)
脚注
- ^ Mordell (1922)
- ^ Weil, André (1928). L'arithmétique sur les courbes algébriques (PhD). Almqvist & Wiksells Boktryckeri AB, Uppsala.
関連項目
参考文献
- 加藤, 和也、黒川, 信重、斎藤, 毅『数論I――Fermatの夢と類体論』岩波書店、2005年。ISBN 4-00-005527-5。
- A. Weil, L'arithmétique sur les courbes algébriques, Acta Math 52, (1929) pp. 281–315, reprinted in vol 1 of his collected papers ISBN 0-387-90330-5
- L.J. Mordell, On the rational solutions of the indeterminate equations of the third and fourth degrees, Proc Cam. Phil. Soc. 21, (1922) p. 179.
- J. H. Silverman, The arithmetic of elliptic curves, ISBN 0-387-96203-4 second edition
- モーデルの定理のページへのリンク