有理点
数論において有理点(ゆうりてん、英: rational point)とは、各座標の値が全て有理数であるような空間の点のことである。
例えば、点 (3, −67/4) は 3 も −67/4 も有理数であるため、2次元空間内の有理点である。有理点の特別な場合として整数点(integer point)があり、これは座標値が全て整数の点である。例えば、(1, −5, 0) は 3次元空間内の整数点である。より一般に K を任意の体とするとき、K-有理点は点の各々の座標値が体 K に属するような点と定義される。同様に、特別な場合である K-整数点は、各座標値が数体 K 内の代数的整数の環の元である点と定義される。
代数多様体上の有理点や K-有理点
V を体 K 上の代数多様体とする。V がアフィン多様体、つまり V を係数が K に属する多項式方程式系 fj(x1, ..., xn) = 0, j = 1, ..., m の零点集合であるとすると、V の K-有理点 P は、体 K に属する数の順序付きの n-個の組 (x1, ..., xn) であり、同時にすべての方程式の共通解となる。一般に V の K-有理点は、V のアフィン開部分集合の K-有理点である。
V が射影空間
- 有理点のページへのリンク