ファルティングスの定理
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/12/08 22:16 UTC 版)
数論において、モーデル予想(英: Mordell conjecture)とは、Mordell (1922) で提示された予想であり、有理数体 Q 上に定義された 1 よりも大きな種数を持つ曲線は、有限個の有理点しか持たないであろうという予想である。後にこの予想は Q を任意の数体へ置き換えた予想へ一般化された。この予想は Gerd Faltings (1983) により証明されたため、ファルティングスの定理(英: Faltings' theorem)として知られている。
背景
C を Q 上の種数 g の非特異代数曲線とすると、C の有理点の集合は次のように決定することができる。
- g = 0 の場合:有理点が存在しないか、もしくは無限個存在する: C は円錐曲線である。
- g = 1 の場合:有理点が存在しないか、もしくは C が楕円曲線で、有理点が有限生成アーベル群をなす。(モーデル定理(Mordell's Theorem)は、後にモーデル・ヴェイユの定理(Mordell–Weil theorem)へ一般化された。さらにメイザーの捩れ定理[1]は捩れ部分群の構造を制限している。)
- g > 1 の場合:ファルティングスの定理(モーデル予想)に該当する。C は有限個の有理点しか持たない。
証明
ファルティングスの元々の証明は、テイト予想の既知の場合へ帰着させるとともに、ネロンモデルの理論を含む代数幾何学の多くのツールを用いるものであった。ディオファントス近似を基礎とする全く異なる証明は、ポール・ヴォイタ(Paul Vojta)により得られている。さらにヴォイタの証明の初等的な証明はエンリコ・ボンビエリが与えた。
結論
1983年のファルティングスの論文は、それ以前に予想されていた多くの主張の結果として得られた。
- モーデル予想(Mordell conjecture):数体上の種数が 1 よりも大きな曲線は有限個の有理点しか持たない。
- シャファレビッチ予想(Shafarevich conjecture):決められた次元の、決められた数体上の偏極次数を持ち、決められた有限個の座(place)の有限集合の外側では良い還元(good reduction)を持つアーベル多様体の同型類は、有限個しか存在しない。
- 同種定理(Isogeny theorem):同型なテイト加群(Tate module)を(ガロア作用、Ql-加群として)もつアーベル多様体は同種である。
モーデルの予想は、Parshin (1971) によってシャファレビッチ予想へ帰着された。ファルティングスの定理の応用の例として、フェルマーの最終定理の弱い形がある。決められた n > 4 に対し、an + bn = cn には有限個の整数解しか存在しない。なぜなら、n に対し、曲線 xn + yn = 1 は種数が 1 よりも大きいからである。
一般化
モーデル・ヴェイユの定理により、ファルテングスの定理はアーベル多様体 A の有限生成部分群 Γ を持つ曲線 C の交点理論についての主張として再定式化することができる。C を A の任意の部分多様体に置き換え、Γ を任意の A の有限ランクの部分群へ置き換えることで、モーデル・ラング予想(Mordell–Lang conjecture)[2]が導出される。
ファルテングスの定理の別の高次元への一般化は、ボンビエリ・ラング予想(Bombieri–Lang conjecture)であり、X が数体 k 上の準標準多様体(pseudo-canonical variety)(すなわち、一般型の多様体)であれば、X(k) は X でザリスキー稠密ではない。さらに一般的な予想がポール・ヴォイタ(Paul Vojta)により提示されている。
函数体のモーデル予想は、Manin (1963) と Grauert (1965) により証明された。Coleman (1990) はマーニンの証明のギャップを見つけ修正した。
実効性
ファルティングスの定理は計算可能性を備えていない(有効でない)。ファルティングスの定理の証明に用いられる議論からは、ヤコビ多様体の構造を用いて、有理点の個数に対して、具体的な上からの評価を求めることはできるが、有理点の大きさの上界が得られるわけではない。そのため、この定理を使って有理点をすべて求めることはできない。 モーデル予想の解決に先立って、Chabauty (1941a, 1941b)はヤコビ多様体の階数が小さいときに、有理点の個数の上界を求める方法を開発し、Coleman (1985)は実際にいくつかの場合に具体的な上界を得ている。 たとえば p が 2g より大きい素数で C が p を法として良い還元をもつとすると、有理点の個数は高々
- ファルティングスの定理のページへのリンク