特異点_(数学)とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 特異点_(数学)の意味・解説 

特異点 (数学)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/02/07 01:46 UTC 版)

数学において、特異性(とくいせい、: singularity)とは、適当な枠組みの下で考えている数学的対象が「定義されない」「よく振舞わない」などと言ったことを理由に除外されること、もの、およびその基準である。特異性を示す点を特異点(とくいてん、singular point)という。

これに対して、ある枠組みの中で、よく振舞う (well-behaved) ならば非特異 (non-singular) または正則 (regular) であると言われる。

実解析における特異性

実解析においては、実函数に対してしばしば連続性を基準に取り、函数の連続性に関して正則な振舞いをする点を連続点、特異な振舞いをする点を不連続点と呼ぶ。実函数の不連続性には二つの種別があり、またそれぞれの種別はそれぞれ二通りに細分される。

第一種不連続点:
可除不連続点
跳躍不連続点
第二種不連続点:
無限不連続点
真性不連続点

複素解析における特異性

複素解析においては、複素函数に対してしばしば微分可能性あるいは解析性を基準として、正則性、特異性を論じる。

孤立特異点 (isolated singularity): 特定の点における函数の有界性からのズレを示すもの
可除特異点 (removable singularity)
(pole)
真性特異点 (essential singularity)
分岐点: 解析接続に関して一価の函数が多価性を示すこと

代数幾何における特異性

代数幾何における特異性は、多様体あるいは環の局所化が正則局所環とはならないこと。

fill in: 結節点英語版重複点尖点孤立点英語版

函数方程式論における特異性

fill in: 確定特異点英語版(正則特異点/フックス型特異点[1])、動く特異点

微分幾何における特異性

微分がランク落ちするような点を臨界点、フルランクの点を正常点とする

関連項目

脚注

出典

外部リンク


「特異点 (数学)」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「特異点_(数学)」の関連用語

特異点_(数学)のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



特異点_(数学)のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの特異点 (数学) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS