きぼう 船体

きぼう

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/09/16 07:11 UTC 版)

船体

「きぼう」は与圧部である船内実験室 (PM) と船内保管室 (ELM-PS)、曝露部の船外実験プラットフォーム (EF) と船外パレット (ELM-ES)、きぼう専用マニピュレーターのロボットアーム (JEM-RMS)、衛星間通信システム (ICS) といった6つの主要部位で構成されている[105]。すべてを結合した状態での、きぼうの全長は20.5m(ロボットアーム除く)、全高8.6m(船外実験プラットフォーム除く)、全幅8.9m(船外パレット、ICS-EF含む)、重さ約26トンであり[15]、国際宇宙ステーション(ISS)の中で最大の実験モジュールとなっている[1]

船内実験室外観
入り口側から見た船内実験室内部。画面中央の円形部がエアロック、その右上と左上に窓があり、窓側の壁面は白いカバーで覆われている。照明が上の1面のみで、反対側の床面の両端に青い線が2本引かれている。(2008年6月)
船内実験室内部から見た入り口。(2015年9月)
ハーモニー側から見た船内実験室の入り口。入口の床に「Welcome to KIBO! Please enjoy and relax in this brand-new, the most spacious and quietest room in the ISS.」と書かれたシールが貼られている。(2017年12月)
エアロックの内側ハッチを開け内部で作業をしている若田光一宇宙飛行士。(2009年4月)
小型衛星放出のため、きぼうエアロックの外側ハッチを開放している様子。(2017年11月)

船内実験室 (PM)

船内実験室 (Pressurized Module:PM)は、きぼうの中心となる部位[14]。地上と同じ1気圧の空気が保たれ、宇宙飛行士は普段着で過ごせ、最大4名が同時搭乗できる[14][106]。主に微小重力環境を利用した実験を行う[14]。内部にはきぼう全体のシステムを管理・制御する装置のラックと実験設備が備えられた国際標準実験ラックの合わせて23個のラックを設置できるよう設計されており、そのうち10個は実験ラックを予定している[106]。きぼうの主要システムは、ラックも含めてA系とB系の二重冗長構成になっている[107]。船内実験室の四隅にはスタンドオフ部と呼ばれる各ラック間の隙間部分があり、ここに電力などの各種リソース供給のための配管・配線などがハーモニー側に向けて艤装されている[108]。ラックなどが運び入れられると、宇宙飛行士が活動できる空間は約2.2m四方となり[109]、クルー支援系設備として各所に多数の足拘束具であるフット・レストレイント(Foot Restraint)とハンドレールが設置されている[109]。空気吹き出し口は照明と交互に10か所以上設けられており、空気吸い込み口は床側両端にある青線上に10か所以上設けられている[106][108]

船内と船外実験プラットフォームとの間で実験装置や交換用の機器などの出し入れに使う円筒形のエアロックも装備されているが、寸法が小さいため宇宙服を着た人間の出入りはできない。室内側の上部に小窓のついているハッチは内側ハッチと呼ばれ小窓を通して中の様子を確認でき、宇宙空間側のハッチは外側ハッチと呼ばれ、安全のため2つのハッチが同時に開かない仕組みとなっている[110]。内側ハッチは手動で開閉されるが外側ハッチは基本的に電動により開閉され、ボタンでハッチが自動的に開閉するオートモードと、1つ1つボタンを押しながら開閉手順を確認して開閉するマニュアルモードの2種類あり、電力供給がなくなるなどの緊急時には船内実験室側から手動で開閉できるようになっている[110]。物資を搬出する際には、エアロック内の移動テーブルに取り付けて伸展させることにより出し入れ行う[111]。これらを使用して、地球観測、材料の実験や製造、生命科学(宇宙医学・バイオなど)、通信などの実験が行われる。このエアロックは、使用時にエアロック内の空気を船内に回収できる機能があり、3時間でエアロック内の空気の約8割を回収できる[112]>。

船内実験室は船内保管室と共にほとんどが高張力アルミ合金を用いた溶接一体構造となっている。空気漏洩対策として貫通部のシール全てが2重以上(与圧部間のOリングシールは3重[113][114])になされており、漏洩が起きてもシールを後から追加で取り付けられる構造となっていて、大きさが6インチ以上の漏洩時の影響が大きいシールは、測定孔が設けられ個別に漏洩確認ができるようになっている。筑波宇宙センターで行われた真空槽に入れての気密試験では、1年間に100リットル程度の漏洩量という試験結果が出ており、アメリカの実験棟より1桁少なく良好な結果を示している[115]。また、2004年1月に起きたアメリカ実験棟にある2重ガラス窓の曇り防止のために設けられている空気排出用のジャンパホースを宇宙飛行士が何回も掴んだことによる空気漏洩事故により、まだ打ち上げ前の「きぼう」は対策として白いカバーをジャンパホースごと窓のある壁面を覆っている[115]

他モジュールとの接続部分である共通結合機構(Common Berthing Mechanism:CBM)は、国際宇宙ステーションの共通部品であるためアメリカ・ボーイング社が製造しており、船内実験室側のアクティブCBMに船内保管室側のパッシブCBMが接続しており、船内実験室側のパッシブCBMにハーモニー側のアクティブCBMが接続している。結露防止対策として外壁構造にヒーターが設けられていて、カビや微生物の繁殖を抑える塗装が施されている[113][116]

窓はエアロックの左右に1つずつ合計2つあり[117]、通常はシャッターで閉じられているが[118]、丸いハンドルを回すことで手動で開閉できる[119]。当初、窓はロボットアームを操作する際、2人の内1人がディスプレイ越しに操作を行い、もう1人が肉眼でロボットアームの動きを見て補助をするのに用いるため設計に盛り込まれた。ところが、ロボットアームがディスプレイだけで操作ができるほど高性能だったため、必要性がなくなり開発費などの節減も含めて窓の削除が提起されたが、窓がない閉鎖空間で勤務する宇宙飛行士たちの心理的側面を考慮し窓の削除案は退けられている[50]。また、キューポラが設置されるまでは地球を眺められる窓は「きぼう」やズヴェズダなどしかなく[120]、よく宇宙飛行士が訪れていたという[50]

壁面の色は、やや灰色がかったオフホワイトが採用されている。これは壁面の色を決めるにあたって、約100人の被験者を集めて「きぼう」の小型模型で実験を行い、また、様々な国籍・人種の宇宙飛行士にストレスを与える要因がなく、新機材などによる内部の変化に調和しやすい色が考慮された結果である[50]

照明に関しては、当初は4面全てに照明を設ける予定であったが、実験を行ったところ4面全てが天井に見えてしまい不快感の惹起や宇宙酔いの原因にもなりうるなどの心理面による身体的悪影響が判明したため、照明は船内保管室が設けられている側の1面のみにし、その反対側の壁面には両端に青線を2本引き、目視で上下を判断できるようになされている[50]

静粛性に関しては、他国のモジュールでは空調ファンや冷却水ポンプなどを原因とする騒音が酷く(防音・吸音・遮音材・サイレンサーなどの対策により現在はある程度改善している)、初期には宇宙飛行士が一時的な難聴になるほどだったのに対し、きぼうはISSの中で最も静かなモジュールで、ISSで定められている「一般の静かな事務所と同程度の水準」としている騒音基準を満たしているのは「きぼう」のみとなっている[50][120][121]。そのため他国の宇宙飛行士に人気があり、家族と交信する際などに「きぼう」がよく使われるという[122]。広くて静かなため、ISSが6人態勢になった時に2010年秋までアメリカ製の個室の寝室が設置されたこともある(現在はハーモニーに移されている)[121][123][124][125]

船内実験室の入り口側の壁には、JAXAの旗、日の丸、きぼう組み立て時や日本人宇宙飛行士が長期滞在した時のミッションのワッペンと宇宙飛行士のサインがある[126]。入口の床には、打ち上げ前に宇宙飛行士に宛てて「Welcome to KIBO! Please enjoy and relax in this brand-new, the most spacious and quietest room in the ISS.」と書かれた青いシールが貼られている[127]。船外実験プラットフォーム上の船外実験装置を撮影する曝露部視覚装置(船外カメラ)がエアロック側側面外縁部脇に窓と同じ高さに2台設置されており、これとは別に船内にも入口側とポート側のエアロック上部[56][128]に2台の視覚装置(カメラ)が設置されている[129][130]

また、船内実験室の外壁には日の丸と「JAPAN」の文字が入っており、多数の船外活動用手すりが外壁全周に配置されている[109]。「こうのとり」近傍通信システム(Proximity Communication System:PROX、無線通信装置)の通信アンテナは、船内実験室の進行方向側側面外壁に設置されており、レーザー反射鏡である反射器(レーザーレーダーリフレクター)は船内実験室の地心側に設置されている[131]。船内実験室をISSに設置する際に用いるロボットアームの把持部であるグラプルフィクスチャーは、進行方向側側面に電力・通信インターフェース付グラプルフィクスチャー(Power and Data Grapple Fixture:PDGF)が、その反対側側面に軌道上取り外し可能型グラプルフィクスチャー(Flight Releasable Grapple Fixture:FRGF)が、それぞれ天頂面よりに1つずつ計2か所に設けられている[132][133]。スペースシャトルの貨物室に固定するためのトラニオンピンが右舷と左舷の両側面に1つずつ計4か所、キールピンが地心側中央部分に1か所あり、いずれも船内実験室がISSに設置された後に放熱を防ぐため断熱カバーで覆われている[134]

「EXPRESS Rack 4」で作業を行うペギー・ウィットソン、ジャック・D・フィッシャー両宇宙飛行士。右隣はワークステーションラック。(2017年8月)
主要諸元[106][107][109]
  • 形状 - 円筒形
  • 直径(外径) - 4.4m
  • 直径(内径) - 4.2m
  • 全長 - 11.2m
  • 壁の厚さ - 約10cm(メテオロイド・デブリシールドとして、進行方向側以外の壁が外から順に、1.27mm厚の白いアルミ合金6061-T6のデブリバンパー、多層断熱材(Multi Layer Insulation:MLI)、アルミ合金2219-T87の与圧壁(アイソグリッド構造で最薄4.8mm)で構成されている「ホイップルバンパー」でできており、進行方向側150度分のみ「スタッフィング入りバンパー」(スタッフィングはバンパー側から順にMLI、アルミメッシュ、Nextel AF62(セラミック)、Kevlar 710(炭素複合材)、Kapton(ポリイミド)でできている)が設けられている。)[135][136][137]
  • 非貫通確率 - 10年間軌道上で運用した時、外壁に微小隕石やデブリによって貫通穴が生じない確率は、船内実験室と船内保管室を合わせて0.9738以上[45]
  • 質量 - 14.8t
  • 搭乗員 - 通常2名、最大4名(時間制限あり)、居住設備は米国モジュールに依存[74]
  • 搭載ラック - 総数23台
    • システム機器用ラック - 11台
      • 電力ラック(Electrical Power System:EPS) - 分電盤や分電箱が搭載されているラックで、ISSの太陽電池パドル(Solar Array Wing:SAW)で発電した電気(直流120V×2系統)を、きぼうの各機器に分配する役割を持っており、2台設置し冗長構成にしている。
      • 情報管制ラック(Data Management System:DMS) - きぼうのメインコンピューター「きぼう制御装置」(JEM Control Processor:JCP)と実験装置用の中速データ伝送装置などが搭載されているラックで、2台設置し冗長構成にしており、片方が故障しても自動的に残りの1台に切り替わる。
      • 空調/熱制御ラック(ECLSS/TCS Rack:Environmental Control and Life Support System(イークレス)/Thermal Control System Rack) - きぼう内の温度、湿度、気圧の調整、空気の循環・浄化、各ラックに冷却水の供給を行うラックで、ECLSS/TCS1(LTL(Low Temperature Loop))とECLSS/TCS2(MTL(Medium Temperature Loop))の2台設置し冗長構成にしている。
      • ロボットアーム制御ラック - 船内実験室へ最初に設置された、きぼうロボットアーム(JEM Remote Manipulator System:JEMRMS)のロボットアーム操作卓を収めたラック。
      • ワークステーションラック(Work Station Rack) - 画像データ等の切替機器、音声通信端末装置(Audio Terminal Unit:ATU)[138]、テレビモニター2台(1台のみ設置)、警告・警報パネル(Caution and Warning Panel:C&W Panel)などが収められているラック。
      • 衛星間通信システムラック(ICS/PROX:Inter-orbit Communication System/Proximity Communication System) - 衛星間通信システム機器とHTV用のPROX装置を搭載したラック。
      • 保管ラック(JEM Resupply Stowage Rack:JRSR) - 2台
    • 実験ラック - 10台(予定)(2017年12月26日時点で、JAXA 5台、NASA 2台、冷凍・冷蔵庫ラック 2台を設置[107]
きぼう船内実験室の入り口から向かって左側手前(後方:After)から
「JPM1A1」 - NASAの冷凍・冷蔵庫のMELFI-2
「JPM1A2」 - 細胞実験ラック
「JPM1A3」 - 流体実験ラック
「JPM1A4」 - 多目的実験ラック(MSPR)
「JPM1A5」 - 保管ラック(Zero-g StowageRack:ZSR)
「JPM1A6」 - きぼうロボットアーム制御ラック(JEM Remote Manipulator System:JEMRMS)
反対の右側手前(進行方向:Forward)から
「JPM1F1」 - NASAの米国実験ラック(EXPRESS(Expedite the Processing of Experiment to the Space Station) Rack 5)
「JPM1F2」 - 多目的実験ラック2(MSPR-2)
「JPM1F3」 - 勾配炉実験ラック
「JPM1F4」 - ワークステーションラック
「JPM1F5」 - NASAの米国実験ラック(EXPRESS Rack 4)
「JPM1F6」 - NASAの保管ラック(ZSR)
入り口から向かって床側手前(床:Deck)から
「JPM1D1」 - 空調・熱制御用のECLSS/TCS1(LTL)ラック
「JPM1D2」 - 電力ラック1(EPS1)
「JPM1D3」 - 保管空間
「JPM1D4」 - NASAとJAXAの冷凍・冷蔵庫のMELFI-1
「JPM1D5」 - 電力ラック2(EPS2)
「JPM1D6」 - 空調・熱制御用のECLSS/TCS2(MTL) ラック
反対の天井側手前(天井:Overhead)から
「JPM1O1」 - 情報管制ラックのDMS2、可搬式酸素マスクのPBA(Portable Breathing Apparatus)と消火器のPFE(Portable Fire Extinguisher)
「JPM1O2」 - システム保管ラック1(JRSR-2)
「JPM1O3」 - ユーザー保管ラック1(JRSR-1)
「JPM1O4」 - 衛星間通信システムラックのICS/PROX
「JPM1O5」 - 情報管制ラックのDMS1、更にその奥に可搬式酸素マスクのPBAと消火器のPFEが設置されている。
  • 電力 - 直流120V・最大24kW
  • 通信制御 - 32ビット計算機システム、高速データ伝送最大100Mbps
  • 環境制御性能 - 温度:18.3-26.7度、湿度:25-70%
  • 寿命 - 10年以上
エアロック主要諸元[109]
  • 外径 - 船外実験プラットフォーム側1.7m、船内実験室側1.4m
  • 長さ - 2.0m
  • 耐圧性能 - 約1,047hPa
  • 通過可能荷物寸法 - 約0.64m×0.83m×0.80m
  • 通過可能荷物重量 - 300kg
  • 消費電力 - 600W以下
船内保管室
ハーモニーに仮設置されている船内保管室(2008年3月)

船内保管室 (ELM-PS)

船内保管室 (Experiment Logistics Module Pressurized Section:ELM-PS)は、軌道上で保管庫として使用される部位で、日本が打ち上げた初の有人施設となった[139]。2011年2月に多目的補給モジュール「レオナルド」を恒久型多目的モジュールに改造してISSに設置されるまで、ISSの実験モジュールの中で唯一の専用保管室であった[107]。実験室同様に1気圧が保たれ、8台のラックを搭載できる[139]。打ち上げ時に搭載していたラックは船内実験室打ち上げ後に移設され、その後は保管空間として実験機器、実験試料、ISSの各部品などの保管[140]に使われている[139]

天頂面の一部が斜めに切られたような形状になっているが、ここには船外実験プラットフォームと同じ実験装置交換などに使う船内保管室装置交換機構(EFU)が1基設置されている[114][141]。これはHTV到着時に、後述の船外パレットをここに仮置きして、HTVの曝露パレットを取り付ける場所を空けるために使用する計画であったが、その後船外パレットは地上に回収することになったため、このような使い方は必要なくなった[141]。その後、2018年7月13日にHREP(後述のアメリカの船外実験装置)をドラゴン宇宙船15号機に回収するにあたって、一時的に船内保管室の装置交換機構(EFU)に移されており、カナダアーム2との受け渡し場所として使われるなどしている[142]。また、この天頂面には「こうのとり」近傍通信システム(PROX)のGPSアンテナ2基が設置されている[131]

当初の計画では、船内保管室はスペースシャトルを使って物資の運搬と回収を行う輸送用コンテナとして用いる予定であったが、スペースシャトルの退役により取りやめになり、代わりに輸送についてはHTVがその役割を担うことになった[112]。地上へは持ち帰らない方針になったため、スペースシャトルへの積み込みに必要な部品の一部(EFUの下部、進行方向の反対側側面にあった把持部である軌道上取り外し可能型グラプルフィクスチャー(Flight Releasable Grapple Fixture:FRGF)[133][143]など)は船内保管室から取り外された。

静粛性も優れており、きぼう船内実験室も静かだが、実験装置のない船内保管室は特に静かだという[120]。壁には船内実験室と同様に打ち上げ前に宇宙飛行士に宛てて「Welcome to the highest place of Japan over Mt.Fuji」(日本の富士山より高い場所にようこそ)と書かれた青いシールが貼られている[127][144]

主要諸元[139][145]
  • 形状 - 円筒形
  • 直径(外径) - 4.4m
  • 直径(内径) - 4.2m
  • 全長 - 4.2m
  • 壁の厚さ - 約10cm(メテオロイド・デブリシールドとして、進行方向側以外の壁が外から順に、1.27mm厚の白いアルミ合金6061-T6のデブリバンパー、多層断熱材(Multi Layer Insulation:MLI)、アルミ合金2219-T87の与圧壁(アイソグリッド構造で最薄4.8mm)で構成されている「ホイップルバンパー」でできており、進行方向側223度分のみ「スタッフィング入りバンパー」(スタッフィングはバンパー側から順にMLI、アルミメッシュ、Nextel AF62(セラミック)、Kevlar 710(炭素複合材)、Kapton(ポリイミド)でできている)が設けられている。)[135][136][137]
  • 非貫通確率 - 10年間軌道上で運用した時、外壁に微小隕石やデブリによって貫通穴が生じない確率は、船内実験室と船内保管室を合わせて0.9738以上[45]
  • 乾燥重量 - 4.2t(打ち上げ時8.4t)
  • 搭載ラック - 8台
  • 電力 - 直流120V・最大3kW
  • 環境制御性能 - 温度:18.3-29.4度、湿度:25-70%
  • 寿命 - 10年以上
船外実験プラットフォーム
カナダアームにより船内実験室に接続される船外実験プラットフォーム(2009年7月)

船外実験プラットフォーム (EF)

船外実験プラットフォーム (Exposed Facility:EF)は、微小重力・高真空の宇宙曝露環境を利用して、科学観測、天体観測、地球観測、通信、理工学実験、材料曝露実験などを行う多目的実験空間を提供する装置[146]。船外実験装置や衛星間通信装置を取り付けるための能動的な結合部である船外実験プラットフォーム側装置交換機構(Exposed Facility Unit:EFU)[147]が設けられており、これに実験装置側にある受動的なペイロード側装置交換機構(Payload Interface Unit:PIU)[148]が接続を行い、両者を含む一連の仕組みを船外実験プラットフォーム装置交換機構(Equipment Exchange Unit:EEU)と呼ばれている[149]。船外実験プラットフォーム側装置交換機構(EFU)は船内実験室から見て右端側面にEFU#1・EFU#3・EFU#5・EFU#7の4か所、左端側面にEFU#2・EFU#4・EFU#6・EFU#8の4か所、前端側面にEFU#9・EFU#10の2か所、上面前端付近にEFU#11・EFU#12の2か所の計12か所あり[148]、この結合部に各実験装置を取り付けることで様々な実験が行える[146]。実験装置は、基本的に標準ペイロードと呼ばれるJEM曝露部搭載型共通バス機器部(APBUS)に搭載された上で各EFUに設置され、APBUSの大きさは0.8m×1.0m×1.85mで、最大で重さ500kgまで搭載可能となっている[21][150]。EFU#2とEFU#9は2.5トンまでの実験装置を設置可能なため、より大きな寸法の実験装置が容認される可能性はある[150]

曝露実験装置の設置場所は米、露、欧州も有しているが、電力・通信(MIL-1553Bによる低速系のバスライン)のみの供給に留まり、これらに加えて中速系のイーサネットと光ファイバーによる高速系の光通信や能動的な熱制御能力(排熱・冷却)まで提供可能なのは「きぼう」の船外実験プラットフォームだけである[150][151]。受動的な船外実験プラットフォーム結合機構(Exposed Facility Berthing Mechanism:EFBM)が設置されており、きぼう船内実験室側の能動的なEFBMと結合している[106][152]。ロボットアームが掴む把持部であるグラプルフィクスチャー(Grapple Fixture)は上面中央両端に1つずつ計2か所あり、子アーム保管装置は上面手前右にある[153][154][155]

船外実験プラットフォームの構造は、内部は「Spar」と呼ばれる格子状のアルミ合金製フレームに「Bulkhead」と呼ばれる板状のアルミ合金製フレームが組み合わさってできており、それらのフレームの周囲を上面が「Upper Panel」、下面が「Lower Panel」、手前側面が「Forward Panel」、前方側面が「Aft Panel」、両端側面が「Side Panel」のアルミ合金製パネルで覆われ、その四隅と下面前端の計5か所に、スペースシャトルの貨物室に固定するための「トラニオン(Trunnion)」または「STS取付構造(STS(Space Transportation System) mounting structure)」[注釈 9]と呼ばれる、棒状の「Support Leg Assembly-Keel」とキール結合部の「Scuff Palate」で構成された3点支持架があり、その内前方両端2か所のトラニオンには照明、雲台、カメラで構成された曝露部視覚装置Visual Equipment:VE)が搭載されている[130][153][154][156][157]

船外実験プラットフォームの内部機器は、円滑な運用が行えるよう故障時に交換ができる軌道上交換ユニット(Orbital Replacement Unit:ORU)化されており、ORUは上面に8個設けられているロボットアームで交換が行えるロボティクス対応軌道上交換ユニット(Robot essential ORU:R-ORU)と、下面に4個設けられている宇宙飛行士が船外活動で交換を行う船外活動対応軌道上交換ユニット(Extravehicular activity ORU:E-ORU)の2種類ある[153][154]

R-ORU化されているのは、曝露部電力分配箱(Exposed Facility-Power Distribution Box:EF-PDB)、サバイバル電力分配箱(Survival Power Distribution Box:SPB)、曝露部制御装置(Exposed Facility System Controller:ESC)、ビデオスイッチャー(Video Switcher:VSW)、ポンプパッケージ(Fluid Pump Package:FPP)の5種類で、E-ORU化されているのは、熱制御系インターフェースユニット( TCS( Thermal Control System) Interface Unit:TIU)、ヒーター制御装置-a(Heater Control Equipment-a:HCE-a)、ヒーター制御装置-b(Heater Control Equipment-b:HCE-b)、船外実験プラットフォーム装置交換機構(EEU)ドライバーユニット(EEU Driver Unit:EDU-a/b)の4種類となっている[153][156]

  • 各EFUの接続機器の内訳(実験に使えるのはEFU#7、EFU#10、EFU#12を除く残りの9か所で、実験装置の重量はEFU#2、EFU#9が2.5トン以内で他の所は500kg以内となっている)[21][158][159]
EFU#1に全天X線監視装置(MAXI)
EFU#2(大型重量用2.5トン以下)にアイスクリーム(ISS-CREAM)[160]
EFU#3は未設置[142](以前は超伝導サブミリ波リム放射サウンダ(SMILES)が設置されていて[161]、その後キャッツ(CATS)が設置されていた[162]。)
EFU#4にナノラックス船外プラットフォーム(NREP)[163]
EFU#5に中型曝露実験アダプター(i-SEEP)[164]
EFU#6にジェダイ(Global Ecosystem Dynamics Investigation:GEDI、アメリカの地球観測用レーザー[165][166]。以前は沿岸海域用ハイパースペクトル画像装置および大気圏/電離圏リモート探知システム実験装置(HREP)[167]が設置されていたが、2018年7月に撤去されている[142]。)
EFU#7に衛星間通信システム曝露系サブシステム(ICS-EF)[168](EFU#7の不具合時はEFU#5を優先使用)
EFU#8にキャッツ(CATS[162]、以前はポート共有実験装置(MCE)が設置されていた[161][169]。)
EFU#9(大型用2.5トン以下)に高エネルギー電子・ガンマ線観測装置(CALET)
EFU#10にエコストレス(ECOSTRESS[170]、本来はHTVの曝露パレットが設置される場所で普段は空いているが、エコストレスが設置された2018年7月の時点で、9号機までとなっている打ち上げ予定のHTV7-9号機の曝露パレットはISS用新型リチウムイオンバッテリーを搭載するため[171]、実験機器設置のためEFU#10を使う予定はない。かつては船外パレットの使用箇所でもあったが後述の通り1回のみの使用で終わった。EFU#10の不具合時はEFU#9を優先使用。)
EFU#11は未設置(以前は宇宙環境計測ミッション装置 (SEDA-AP)がEFU#9からここに移設されていたが2018年12月21日に廃棄されている[172]。)
EFU#12は実験装置交換時の仮置場(普段は使用不可)
主要諸元[173][174]
  • 形状 - 箱形
  • 幅 - 5.0m
  • 長さ - 5.2m(EFBMと前端EFUまでの長さ、トラニオン上の曝露部視覚装置を含めると5.6m)[154]
  • 高さ - 3.8m(曝露部視覚装置を含めると4.0m)[154]
  • 質量 - 4.1t
  • 実験装置取付け場所 - 12箇所
    • システム機器用 - 2箇所
    • 実験装置設置用 - 9箇所
    • 実験装置仮置き用 - 1箇所
  • 電力 - 直流120V・最大11kW
    • システム機器用 - 最大1kW
    • 実験装置用 - 最大10kW
    • 個別の実験装置 - 最大3kW
  • 通信制御 - 16ビット計算機システム、データ伝送速度:最大100Mbps
  • 環境制御性能 - なし
  • 寿命 - 10年以上
船外パレット
船外実験プラットフォーム(手前)に接続された船外パレット(奥)、実験機器を3台搭載しているのが見える。船外活動しているのはクリストファー・カシディ宇宙飛行士。(2009年7月)

船外パレット (ELM-ES)

船外パレット (Experiment Logistics Module Exposed Section:ELM-ES)は、船外実験プラットフォームに取り付ける船外機器を船外実験装置取付け機構(Payload Attach Mechanism:PAM)に3基取り付けて、スペースシャトルで輸送するためのパレット[175]。装置交換機構(PIU)により、船外実験プラットフォーム側の EFU#10に一時的に設置される[148]。船外パレットの構造は格子状のパネルとフレームが組み合わさってできており、最大500kgの船外実験機器を3個搭載できる[176]。トラニオンは両側面に2か所ずつと先が細くなってる前端部分に1か所の計5か所にある[177]。保温のため船外パレット全体が多層断熱材(MLI)で覆われている[176]

船内保管室と同様に、シャトルによる複数回の打ち上げを想定して設計され、機器の地上への回収も可能なように設計されたが[175]、開発期間中は具体的な回収計画は決まっていなかった[178]。しかし、船外パレットをISSに設置したままだとISSのロボティクス運用の制約となることから、船外パレットを輸送したスペースシャトルで即時回収されることが決まった[178]。回収するにあたって、再搭載時に宇宙飛行士がカメラでスペースシャトルとの相対位置の確認に使うキールカメラターゲットを、装置交換機構(PIU)のある側とは反対側の先端部分にNASAの要請で追加で設置している[178]。その後、2J/Aミッションで初めて打ち上げられたが、スペースシャトルが退役したため再使用されることはなかった[178]。船外パレットの役割はHTVの曝露パレット(Exposed Pallet:EP)が担うこととなり、船外パレットの開発・運用で得られた技術は曝露パレットの開発・運用に活かされている[178]。船外パレットが再使用されなくなったため、搭載する実験機器に設けられる、船外パレットに取り付けるための4本のペイロードトラニオン(Payload Attach Mechanism-Payload Unit:PAM-PU)は、HTVでの輸送時には打上げ保持機構(HTV Cargo Attachment Mechanism – Passive:HCAM-P)に変更される[150]

2J/Aミッションでは、船外実験装置2基 (MAXI、SEDA-AP) と衛星間通信システム (ICS-EF) を搭載し運搬した[92]。これらの搭載機器はきぼうロボットアームを使用して船外実験プラットフォームに移設され、船外パレットは空のままスペースシャトルのペイロードベイに戻されて、地球へ回収された[92][179]

主要諸元[180]
  • 形状 - フレーム型
  • 幅 - 4.9m
  • 長さ - 4.1m
  • 高さ - 2.2m(実験装置を含む)
  • 質量 - 1.2t(実験装置を含まない)
  • 実験装置取付け場所 - 3箇所
    • 実験装置2個+R-ORU 3個またはE-ORU 2個
  • 電力 - 直流120V・最大1kW
  • 熱制御方式 - ヒーター、断熱材
  • 環境制御性能 - なし
  • 寿命 - 10年以上
ロボットアーム(親アーム)
エアロックの移動テーブルに取り付けられているのが子アーム。(2010年1月)

ロボットアーム (JEM-RMS)

きぼうロボットアーム (JEM-Remote Manipulator System:JEM-RMS)は、実験や船体の保全作業支援に使用するロボットアームである[181]。全長10mの親アームと、親アームの先端に取り付けて使用する2.2mの子アームの2つと船内のロボットアーム操作卓(RMSラック)からなる[181]。アームはそれぞれ6つの関節を持ち、人間の腕と同じような動作が可能である[181][182]

親アームは船内実験室のエアロックの左上にあるロボットアーム取付け台に設置されており[106][183]、親アームブーム(船内実験室側から順に1から3まである)、関節、把持手であるエンドエフェクター(End Effector)、テレビカメラ・雲台・照明(視覚装置)で構成され、親アームブーム2(肘部)と3(手首部)にテレビカメラ・雲台・照明(各々肘部視覚装置、手首部視覚装置)があり[129][130]、カメラ超しに映像を見ながら船外実験装置の交換作業を中心に使われる[182]。子アームは、子アームエレクトロニクス、子アームブーム、関節、把持手であるエンドエフェクター(ツールと呼称)、テレビカメラで構成されている[182]。親アームのエンドエフェクターで子アームを把持した上で、船外実験プラットフォームにある軌道上交換ユニット(ORU)の交換など、精度の高い作業で使われるため、アーム先端が対象物に合わせて自動でアームの姿勢制御を行うコンプライアンス機能が搭載されている[181][182]。子アームを使わない時は、船外実験プラットフォーム上面の手前右に設けられている「子アーム保管装置(Small fine arm Stowage Equipment:SSE)」[155]に収められており、親アームも使わない時は、親アームブーム1を垂直に立てた上で親アームブーム2を斜め下に折り曲げた山折りの状態の保存姿勢で待機している[183]。親アームは、電力・通信インターフェース付グラプルフィクスチャー(Power and Data Grapple Fixture:PDGF)と、軌道上取り外し可能型グラプルフィクスチャー(Flight Releasable Grapple Fixture:FRGF)の両方に対応している[133]

子アームはHTV初号機の与圧部に搭載して打ち上げられ、きぼう内で組み立てられた後、きぼうのエアロックを使って船外実験プラットフォームへ搬出され、子アーム保管装置に収納された[95][181]。子アームが扱えるものは、きぼう標準のツールフィクスチャーが取り付けられているものに限られ、ツールフィクスチャーには把持及びトルク供給機能があるI型と、把持及び電力供給、信号授受機能があるII型の2種類ある[184]

JEM-RMSは地上からも遠隔操作で動かすことができる[185]。2012年のHTV3号機からこの地上からの遠隔操作を本格使用する予定であり、そのための試験が2011年12月6日に行われた[186]。以後、ロボットアームの操作は主に地上からの遠隔で行われており、その分宇宙飛行士の活動時間を他の作業に割り当てることができるようになっている[187][188]

なお、きぼうロボットアームの開発にあたって、1997年8月に打ち上げられたスペースシャトルのSTS-85で行われたマニピュレーター飛行実証試験(Manipulator Flight Demonstration:MFD)[189]のロボットアームや、1997年に打ち上げられたきく7号に搭載されたロボットアームで培われた技術と運用経験が設計に生かされており[190]、日本で3番目となる宇宙用遠隔操作型ロボットアームシステムであり、かつ日本初の実用宇宙ロボットである[80][182]

主要諸元[181][191]
  • 親アーム
    • 型式 - 親子式6自由度アーム
    • 自由度 - 6
    • 長さ - 10m
    • 質量 - 780kg
    • 取扱量 - 最大7,000kg
    • 位置決め精度 - 並進±50mm、回転±1度
    • 先端速度 - 60mm/s(対象物:600kg以下)、30mm/s(対象物:3,000kg以下)、20mm/s(対象物:7,000kg以下)
    • 最大先端力 - 30N以上
    • 寿命 - 10年以上
  • 子アーム
    • 型式 - 親子式6自由度アーム
    • 自由度 - 6
    • 長さ - 2.2m
    • 質量 - 190kg
    • 取扱量 - 最大300kg
    • 位置決め精度 - 並進±10mm、回転±1度
    • 先端速度 - 50mm/s(対象物:80kg以下)、25mm/s(対象物:300kg以下)
    • 最大先端力 - 30N以上
    • 寿命 - 10年以上
画面上部にあるアンテナの付いている装置が衛星間通信システム曝露系サブシステム(ICS-EF)。(2009年11月)

衛星間通信システム (ICS)

衛星間通信システム(Inter-orbit Communication System:ICS)は、データ中継衛星こだま(DRTS)を介して筑波宇宙センターとデータ・画像・音声などの双方向通信を行う日本独自の通信システムである[192]。船内実験室の与圧系サブシステム(ICS Pressurized Module subsystem:ICS-PM)でデータ処理を行い、2J/Aミッションで船外実験プラットフォームに設置された直径約80cmのアンテナを持つ曝露系サブシステム(ICS Exposed Facility subsystem:ICS-EF、船外実験プラットフォームのEFU#7に設置された[168])で中継衛星・地上とを繋ぐ[192]。 ICS-EFの送受信用アンテナは自らの姿勢が変動してもこだまを自動追尾できるようになっている[193]。ICSとこだまを利用して、こだまが2017年8月5日に退役するまでの間[107][192]、きぼうで行われた実験データのダウンリンクに使われていた[194][195]。また、2014年6月にNASAからこだまをTDRSの予備回線として使いたいと打診があり予備として用いられたが、TDRSが健全であったため実際に予備回線として使われることはなかった[194]。通信速度は、地上へのダウンリンクが50Mbps、地上からのアップリンクが3Mbpsとなっており[192]、きぼうから地上へのハイビジョン映像の送信にも使われている[94]

主要諸元[192][196]
  • 大きさ - ICS-PM・2.0m×1.0m×0.9m、ICS-EF・アンテナ収納時1.1m×0.8m×2.0m、ICS-EF・アンテナ展開時2.2m×0.8m×2.0m
  • 重さ - ICS-PM・330kg、ICS-EF・310kg
  • 通信速度・周波数・変調方式 - ICSから地上・50Mbps・約26GHz・QPSK(Quadrature Phase Shift Keying:四位相偏移変調)、地上からICS・3Mbps・約23GHz・BPSK(Binary Phase Shift Keying:二位相偏移変調)
  • DRTS可視時間(理論値) - 1日あたり計約7.8時間(DRTSが1機の場合)、1回あたり最大約40分
各方向から見たきぼう
進行方向側(前方)から見たきぼう、左上はHTV(こうのとり)2号機。(2011年3月)
進行方向の反対側(後方)から見たきぼう。写真上部が天底側、下部が天頂側。(2009年7月)
天頂側から見たきぼう(2011年5月)
地心側から見たきぼう(2010年2月)

  1. ^ 「管轄権」と「管理の権限」は、国連海洋法条約92条1項及び94条における公海上の船舶に対する旗国の権限と類似するものと解釈されている。具体的には、「管轄権」(jurisdiction)は「宇宙物体上で発生する事実や行為について、登録国が国内法の適用の対象とし(立法管轄権、自国領域外でも有効)、その遵守を強制する権限(執行管轄権、自国領域内のみ有効)」を指し、「管理の権限」(control)は「宇宙物体の活動に対する指令・追跡・管制など、関係国内法令に基づいて行われる事実上の規制行為」を指す。
  2. ^ 日本人宇宙飛行士の飛行機会の配分は、システム運用共通経費(CSOC)の分担が発生する、「きぼう」の運用開始となる与圧部の取り付けと初期検証の終了時点から始まっている。
  3. ^ ISS運用に係る共通的経費のことで、飲食料・消耗品などの補給物資や宇宙飛行士等の輸送経費、運用管制に係る施設の維持管理費や人件費などの地上経費がある。
  4. ^ 当時は「宇宙ステーション」ではなく「宇宙基地」と呼んでいた。
  5. ^ 宇宙ステーションは、1988年にレーガン大統領によって「フリーダム」と名付けられている。
  6. ^ 当初は、リデザイン3案のうちα案が選ばれたことからISSA(International Space Station Alpha)と呼ばれていた。
  7. ^ 日本初の無重量環境試験設備として川崎重工業によって1994年7月26日に完成したが、2011年3月11日に起きた東日本大震災により、配管の破損による水漏れなどの大きな被害を受けたため、復旧は困難として2012年2月に撤去されている。
  8. ^ 出典資料には、2007年5月に打ち上げ予定のATVの後にきぼうの1便目が明記されており、2009年の搭乗員6人体制確立の前にきぼうの最終便が明記されている。
  9. ^ STS(Space Transportation System)とはNASAの宇宙輸送システムのことで、再使用可能な有人宇宙船として構想され、後にスペースシャトル計画となった。
  1. ^ a b c d e f g JAXA|「きぼう」日本実験棟/国際宇宙ステーション(ISS)”. JAXA. 2018年12月15日閲覧。
  2. ^ a b c d e f g h i j 「きぼう」ハンドブック”. 1.3 「きぼう」開発経緯. JAXA (2008年4月). 2018年12月4日閲覧。
  3. ^ (4)日本の実験棟 「きぼう」(JEM)”. 文部科学省 (2011年2月). 2019年1月19日閲覧。
  4. ^ a b c 宇宙開発利用 我が国の宇宙開発史 第五章日本の有人宇宙技術の発展 (1)全体計画の経緯”. 文部科学省 (2011年2月). 2019年2月12日閲覧。
  5. ^ a b 小型衛星放出機構(J-SSOD):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年11月2日). 2018年11月19日閲覧。
  6. ^ a b c d e f 放出履歴:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年10月9日). 2018年11月19日閲覧。
  7. ^ a b JAXA『宇宙にかける「きぼう」』, 第2章 宇宙ステーション計画参加活動の全体経緯 2-23 図2-15及び図2-16
  8. ^ a b c d e JAXA『宇宙にかける「きぼう」』, 第2章 宇宙ステーション計画参加活動の全体経緯 2-24
  9. ^ a b c d e f g h i j k l m 「きぼう」ハンドブック”. 1.2.2 国際宇宙ステーション計画の経緯. JAXA (2008年4月). 2018年12月4日閲覧。
  10. ^ NASAへの輸送:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2007年11月16日). 2019年1月19日閲覧。
  11. ^ a b 「きぼう」組立ミッション:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2010年9月29日). 2019年1月19日閲覧。
  12. ^ a b c 「きぼう」組立第3便ミッション(2J/A)の結果及び若田宇宙飛行士の長期滞在任務完了について”. JAXA (2009年8月5日). 2019年1月17日閲覧。
  13. ^ a b c d 付録1 国際宇宙ステーション(ISS)計画概要(その3)”. 宇宙開発委員会 国際宇宙ステーション特別部会 -中間とりまとめ- 平成22年6月 [1]. 文部科学省 (2010年6月). 2018年12月11日閲覧。
  14. ^ a b c d 「きぼう」のつくり:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2014年3月17日). 2019年1月19日閲覧。
  15. ^ a b 「きぼう」ハンドブック”. 3.1 各要素の主要諸元. JAXA (2008年4月). 2018年11月30日閲覧。
  16. ^ 国際宇宙ステーション(ISS)計画の実績と成果”. JAXA (2014年4月23日). 2018年12月4日閲覧。
  17. ^ 宇宙にかける「きぼう」 国際宇宙ステーション計画参加活動史. 第3章 国際宇宙ステーション計画における国際協力の法的枠組み 3-17. JAXA (2011年2月28日). 2019年2月22日閲覧。
  18. ^ a b c 日本の実験棟「きぼう」利用の 実験環境について”. 3ページ目. JAXA (2012年10月1日). 2019年2月1日閲覧。
  19. ^ a b c d e f “付録1 国際宇宙ステーション(ISS)計画概要”. 文部科学省 (2014年9月29日). 2018年12月4日閲覧。
  20. ^ a b c d e f 船内実験装置:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年8月2日). 2018年11月16日閲覧。
  21. ^ a b c d e f 船外実験装置:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター. 2018年12月28日閲覧。
  22. ^ JAXA『宇宙にかける「きぼう」』, 第3章 国際宇宙ステーション計画における国際協力の法的枠組み 3-18から3-20.
  23. ^ 国際宇宙ステーション(ISS)計画概要”. 文部科学省研究開発局 (2014年4月23日). 2019年1月25日閲覧。
  24. ^ 2016年~2020年のISS共通システム運用経費(次期CSOC)の我が国の負担方法の在り方について”. 文部科学省 (2015年5月20日). 2019年1月21日閲覧。
  25. ^ a b c ISS・きぼうウィークリーニュース第308号”. JAXA宇宙ステーション・きぼう 広報・情報センター (2008年8月26日). 2019年1月22日閲覧。
  26. ^ 様々な利用とテーマの一覧:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター. 2019年1月22日閲覧。
  27. ^ a b c 「きぼう」利用の成果:これまでに得られた成果”. JAXA宇宙ステーション・きぼう 広報・情報センター (2015年5月14日). 2018年12月13日閲覧。
  28. ^ 2024年までのISS運用延長決定及びHTV-Xの開発について”. 文部科学省 (2016年7月14日). 2019年1月22日閲覧。
  29. ^ 国際宇宙ステーションの運用延長参加に対する日本国政府決定について(国立研究開発法人宇宙航空研究開発機構 理事長談話)”. JAXA (2016年7月14日). 2019年1月22日閲覧。
  30. ^ 実機モデルの製造、組立、試験:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2007年11月16日). 2018年12月11日閲覧。
  31. ^ a b c ISS計画の歩み:国際宇宙ステーション(ISS)”. JAXA宇宙ステーション・きぼう 広報・情報センター (2009年4月30日). 2018年12月4日閲覧。
  32. ^ JAXA『宇宙にかける「きぼう」』, 第2章 宇宙ステーション計画参加活動の全体経緯 2-69.
  33. ^ 未来への挑戦~日本初 有人宇宙施設「きぼう」開発物語~”. 2:36-3:55. YouTube JAXA公式チャンネル (2010年4月19日). 2019年1月29日閲覧。
  34. ^ a b JAXA『宇宙にかける「きぼう」』, 第2章 宇宙ステーション計画参加活動の全体経緯 2-31
  35. ^ JAXA『宇宙にかける「きぼう」』, 第3章 国際宇宙ステーション計画における国際協力の法的枠組み 3-4.
  36. ^ JAXA『宇宙にかける「きぼう」』, 第2章 宇宙ステーション計画参加活動の全体経緯 2-54.
  37. ^ a b c d JAXA『宇宙にかける「きぼう」』, =第2章 宇宙ステーション計画参加活動の全体経緯 2-37 図2-22 JEM 基準コンフィギュレーション変遷
  38. ^ a b c d e f g JAXA's No.037”. JAXA (2011年3月1日). 2018年11月22日閲覧。
  39. ^ a b c d e f JAXA『宇宙にかける「きぼう」』, 第2章 宇宙ステーション計画参加活動の全体経緯 2-34から36
  40. ^ a b c JAXA『宇宙にかける「きぼう」』, 第12章 JEM 曝露部利用(科学と技術開発)への取り組み 12-10
  41. ^ a b JAXA『宇宙にかける「きぼう」』, 第12章 JEM 曝露部利用(科学と技術開発)への取り組み 12-3
  42. ^ 未来への挑戦~日本初 有人宇宙施設「きぼう」開発物語~”. 8:00-10:05. YouTube JAXA公式チャンネル (2010年4月19日). 2019年1月29日閲覧。
  43. ^ a b JAXA『宇宙にかける「きぼう」』, 第12章 JEM 曝露部利用(科学と技術開発)への取り組み 12-3及び12-10
  44. ^ a b JAXA『宇宙にかける「きぼう」』, 第2章 宇宙ステーション計画参加活動の全体経緯 2-41から2-44
  45. ^ a b c d e f g オンラインジャーナル2008年2月号/宇宙ステーション余話 第4回”. 日本プロジェクトマネジメント協会 (2008年2月). 2018年12月17日閲覧。
  46. ^ a b JAXA『宇宙にかける「きぼう」』, 第2章 宇宙ステーション計画参加活動の全体経緯 2-45
  47. ^ a b c d なぜ船内実験室より先に船内保管室が打ち上げられたのですか:よくある質問”. JAXA宇宙ステーション・きぼう 広報・情報センター (2010年8月17日). 2019年1月4日閲覧。
  48. ^ a b c 無重量環境試験棟:運用管制施設”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年9月12日). 2018年12月21日閲覧。
  49. ^ a b c d e 開発:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2007年11月16日). 2018年12月11日閲覧。
  50. ^ a b c d e f 《第4回》宇宙飛行士の採用基準ー宇宙のオフィスの作り方”. 『宇宙兄弟』公式サイト 小山宙哉/講談社 (2016年3月23日). 2018年12月14日閲覧。
  51. ^ 「きぼう」日本実験棟の開発試験の流れ”. JAXA宇宙ステーション・きぼう 広報・情報センター (1999年12月8日). 2019年2月15日閲覧。
  52. ^ a b 「きぼう」日本実験棟開発の歴史”. JAXA宇宙ステーション・きぼう 広報・情報センター (2007年3月13日). 2019年2月14日閲覧。
  53. ^ a b c 宇宙ステーション試験棟:運用管制施設”. JAXA宇宙ステーション・きぼう 広報・情報センター (2013年3月26日). 2019年2月14日閲覧。
  54. ^ 「きぼう」日本実験棟の全体システム試験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2002年7月4日). 2019年2月14日閲覧。
  55. ^ a b 実機モデルの製造、組立、試験:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2007年11月16日). 2019年2月12日閲覧。
  56. ^ a b c 「きぼう」船内実験室、ついに米国へ出発”. JAXA宇宙ステーション・きぼう 広報・情報センター (2003年5月4日). 2019年2月15日閲覧。
  57. ^ 「きぼう」船内実験室、米国到着”. JAXA宇宙ステーション・きぼう 広報・情報センター (2003年6月20日). 2019年2月15日閲覧。
  58. ^ 「きぼう」船内保管室、「きぼう」ロボットアーム、実験ラックの輸送”. JAXA宇宙ステーション・きぼう 広報・情報センター (2007年3月13日). 2019年2月15日閲覧。
  59. ^ 「きぼう」船外実験プラットフォーム、船外パレットが米国に到着:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2008年10月7日). 2019年2月15日閲覧。
  60. ^ NASAへの輸送:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2007年11月16日). 2019年2月12日閲覧。
  61. ^ 打上げ整備作業:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2007年12月17日). 2019年2月12日閲覧。
  62. ^ “渋沢社史データベース 川崎重工業株式会社百年史 : 1896-1996. 資料・年表”. 公益財団法人渋沢栄一記念財団. 2018年11月7日閲覧。
  63. ^ “星出 彰彦 (JAXA宇宙飛行士)@Aki_Hoshideさん | Twitter”. Twitter (2012年2月16日). 2019年2月19日閲覧。
  64. ^ 第2回「きぼう」日本実験棟船外活動手順開発試験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2002年10月31日). 2019年2月18日閲覧。
  65. ^ 第6回船外活動手順開発試験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2006年2月17日). 2019年2月18日閲覧。
  66. ^ 「きぼう」日本実験棟第4回船外活動無重量シミュレーション試験”. JAXA宇宙ステーション・きぼう 広報・情報センター (1999年3月10日). 2019年2月18日閲覧。
  67. ^ a b 「きぼう」命名者名簿を廃棄…名付け親誰なのか不明に”. 読売新聞. 2008年3月26日時点のオリジナルよりアーカイブ。2019年1月17日閲覧。
  68. ^ 「きぼう」命名者名簿、宇宙機構の資料保管庫で“発見””. 読売新聞. 2008年3月28日時点のオリジナルよりアーカイブ。2019年1月17日閲覧。
  69. ^ JAXA『宇宙にかける「きぼう」』, 第2章 宇宙ステーション計画参加活動の全体経緯 2-18.
  70. ^ a b JAXA『宇宙にかける「きぼう」』, 第2章 宇宙ステーション計画参加活動の全体経緯 2-26.
  71. ^ a b 我が国宇宙政策の課題と方向性”. 内閣府 (2012年9月). 2018年12月4日閲覧。
  72. ^ 有人宇宙技術部門紹介パンフレット”. 11ページ目. JAXA (2018年6月). 2018年12月4日閲覧。
  73. ^ a b 「きぼう」日本実験棟の開発にはどんなメーカーが携わっていたのですか ?| ファン!ファン!JAXA!”. JAXA. 2018年11月23日閲覧。
  74. ^ a b c 三菱重工 | 日本実験モジュール「きぼう(JEM)」”. 三菱重工業. 2018年11月23日閲覧。
  75. ^ 日本実験モジュール“きぼう”の開発”. 三菱重工業 (2002年1月). 2018年12月4日閲覧。
  76. ^ IHIエアロスペース (ロケット関連技術) 国際宇宙ステーション計画Archived 2012年1月24日, at the Wayback Machine.
  77. ^ 国際宇宙ステーション | 宇宙開発 | 事業紹介 | 株式会社IHIエアロスペース”. IHIエアロスペース. 2018年11月23日閲覧。
  78. ^ Kawasaki News 149 Winter2008”. 川崎重工業 (2008年1月). 2018年11月23日閲覧。
  79. ^ NEC 宇宙ソリューション きぼうArchived 2010年1月29日, at the Wayback Machine.
  80. ^ a b NEC技報 Vol.64 No.1(2011年3月)宇宙特集 国際宇宙ステーション日本実験棟「きぼう(JEM)」の開発”. NEC (2011年3月). 2018年12月4日閲覧。
  81. ^ a b 三菱重工業 (2014年10月22日). “ISS・国際宇宙探査の取り組み及び期待について”. 5ページ目. 文部科学省. 2019年1月31日閲覧。
  82. ^ a b ISS計画への参加から得られた成果について”. 13-18ページ目. 文部科学省 (2014年5月16日). 2019年1月30日閲覧。
  83. ^ 「きぼう」の今後の利用方針・計画について(詳細版)”. 2ページ目. 文部科学省 (2014年5月30日). 2019年1月31日閲覧。
  84. ^ a b c d JAXA|日本の有人宇宙活動の原動力は「きぼう」”. JAXA (2011年10月31日). 2019年1月23日閲覧。
  85. ^ JAXA『宇宙にかける「きぼう」』, 第2章 宇宙ステーション計画参加活動の全体経緯 2-53,2-57,2-58.
  86. ^ JAXA『宇宙にかける「きぼう」』, 第2章 宇宙ステーション計画参加活動の全体経緯 2-38,2-41,2-46,2-47,2-53,2-55,2-57,2-58,2-61.2-66.
  87. ^ よくある質問 スペースシャトルに関するQ&A スペースシャトルは最後のフライトを終えましたが、もう飛行することはできないのですか?”. JAXA宇宙ステーション・きぼう 広報・情報センター (2011年9月6日). 2019年1月25日閲覧。
  88. ^ ISSとは:国際宇宙ステーション(ISS)”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年7月11日). 2019年1月17日閲覧。
  89. ^ a b 国際宇宙ステーション計画に関する宇宙機関長会議の結果について”. JAXA (2006年3月8日). 2019年1月17日閲覧。
  90. ^ 「きぼう」船内保管室打上げ・土井宇宙飛行士搭乗ミッションの結果について”. JAXA (2008年4月2日). 2019年1月17日閲覧。
  91. ^ a b 「きぼう」船内実験室打上げ・星出宇宙飛行士搭乗ミッションの結果について”. JAXA (2008年6月18日). 2019年1月17日閲覧。
  92. ^ a b c d 2J/Aミッション:「きぼう」日本実験棟 ミッション結果の要約”. JAXA宇宙ステーション・きぼう 広報・情報センター (2009年8月12日). 2019年1月18日閲覧。
  93. ^ a b 宇宙ステーション補給機(HTV)”. JAXA宇宙ステーション・きぼう 広報・情報センター. 2019年1月18日閲覧。
  94. ^ a b ISS・きぼうウィークリーニュース第376号”. JAXA宇宙ステーション・きぼう 広報・情報センター (2010年3月2日). 2018年11月30日閲覧。
  95. ^ a b ISS・きぼうウィークリーニュース第378号”. JAXA宇宙ステーション・きぼう 広報・情報センター (2010年3月16日). 2019年1月18日閲覧。
  96. ^ a b 第5回船外活動:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2008年3月20日). 2019年1月18日閲覧。
  97. ^ a b c d 1Jミッション:「きぼう」日本実験棟 ミッション結果の要約”. JAXA宇宙ステーション・きぼう 広報・情報センター (2008年6月19日). 2019年1月18日閲覧。
  98. ^ 1Jミッション:「きぼう」日本実験棟 1|第1回船外活動”. JAXA宇宙ステーション・きぼう 広報・情報センター (2008年5月30日). 2019年1月18日閲覧。
  99. ^ a b c d e f 搭載ラック:1J/Aミッション”. JAXA宇宙ステーション・きぼう 広報・情報センター. 2019年1月18日閲覧。
  100. ^ a b 1J/ミッション:「きぼう」日本実験棟 搭載ラック”. JAXA宇宙ステーション・きぼう 広報・情報センター (2008年5月28日). 2019年1月22日閲覧。
  101. ^ 1J/Aミッション - 「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2008年5月19日). 2018年12月3日閲覧。
  102. ^ ミッション概要:1J/Aミッション”. JAXA宇宙ステーション・きぼう 広報・情報センター (2008年3月17日). 2019年1月18日閲覧。
  103. ^ 1Jミッション - 「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2008年8月5日). 2018年12月3日閲覧。
  104. ^ 2J/Aミッション - 「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2009年11月11日). 2018年12月3日閲覧。
  105. ^ 「きぼう」ハンドブック”. 2.1 「きぼう」の構成. JAXA (2008年4月). 2018年11月30日閲覧。
  106. ^ a b c d e f g 船内実験室:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年8月19日). 2018年11月30日閲覧。
  107. ^ a b c d e f g h 金井宇宙飛行士 ISS長期滞在プレスキット”. 付録2 「きぼう」日本実験棟概要. JAXA (2017年12月26日). 2018年11月29日閲覧。
  108. ^ a b 第2章 「きぼう」日本実験棟プロジェクトの概要 独立行政法人 宇宙航空研究開発機構”. 一般財団法人宇宙システム開発利用推進機構 (2008年). 2019年1月4日閲覧。
  109. ^ a b c d e 「きぼう」ハンドブック”. 4.1 船内実験室. JAXA (2008年4月). 2019年1月25日閲覧。
  110. ^ a b 「きぼう」日本実験棟のエアロック機能試験”. JAXA宇宙ステーション・きぼう 広報・情報センター (1999年8月31日). 2018年12月21日閲覧。
  111. ^ 「きぼう」ハンドブック”. 4-10. JAXA (2008年4月). 2018年12月28日閲覧。
  112. ^ a b JAXA『宇宙にかける「きぼう」』, 第5章 日本の宇宙実験システムJEM の技術開発 [Ⅰ] ―有人宇宙システム技術(与圧系)の開発と将来展望― 5-7.
  113. ^ a b 「きぼう」日本実験棟の共通結合機構機能試験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2000年8月17日). 2019年1月4日閲覧。
  114. ^ a b JAXA『「きぼう」で獲得した有人宇宙技術』, 第5章 有人システム維持機能技術~構造・機構系技術 p.45
  115. ^ a b オンラインジャーナル2008年3月号/宇宙ステーション余話 第5回”. 日本プロジェクトマネジメント協会 (2008年5月). 2018年12月17日閲覧。
  116. ^ 「きぼう」日本実験棟フライトモデルの製造現場・インタビュー”. JAXA宇宙ステーション・きぼう 広報・情報センター (2002年10月31日). 2019年1月4日閲覧。
  117. ^ 1Jミッション:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2008年5月30日). 2018年11月23日閲覧。
  118. ^ JAXAきぼうフライトディレクタ (@JAXA_JFLIGHT)さん | Twitter”. JAXA Twitter (2018年11月13日). 2018年11月23日閲覧。
  119. ^ 若田宇宙飛行士のISSツアー 前編”. 3:09-3:16にかけて. YouTube JAXA公式チャンネル (2014年6月8日). 2018年12月18日閲覧。
  120. ^ a b c 三菱電機 DSPACE/2008年5月コラムvol.2 野口飛行士、半年間の宇宙ぐらし決定。さて住み心地は?:林公代”. 三菱電機 (2008年5月). 2018年12月14日閲覧。
  121. ^ a b オンラインジャーナル2008年6月号/宇宙ステーション余話 第8回”. 日本プロジェクトマネジメント協会 (2008年6月). 2018年12月14日閲覧。
  122. ^ ISSにいる大西宇宙飛行士(うちゅうひこうし)と地球の子どもたちを結ぶ、リアルタイム交信!|JAXA×YAC×学研キッズネット| 宇宙のとびら-net|学研キッズネット”. 学研 (2016年9月). 2018年12月14日閲覧。
  123. ^ 宇宙ではどうやって寝るのですか?|ファン!ファン!JAXA!”. JAXA (2010年6月). 2018年12月15日閲覧。
  124. ^ 宇宙ではどうやって寝るのですか:よくある質問”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年1月4日). 2018年12月15日閲覧。
  125. ^ a b 油井宇宙飛行士 ISS長期滞在プレスキット”. 付録1-6. JAXA (2015年10月7日). 2018年11月20日閲覧。
  126. ^ 若田宇宙飛行士のISSツアー 前編”. 12:16-13:43にかけて. YouTube JAXA公式チャンネル (2014年6月8日). 2018年12月18日閲覧。
  127. ^ a b c “「SPACE EXPO 2014」 宇宙博2014(SPACE EXPO)実機を見る 宇宙博2014見どころ3”. 宇宙技術開発株式会社 (2014年8月27日). 2019年1月25日閲覧。
  128. ^ JAXA『「きぼう」で獲得した有人宇宙技術』, 第7章 有人システム維持機能技術 ~電気・通信系技術 p.69.
  129. ^ a b きぼう船外実験プラットフォーム利用ハンドブック”. 2.3.5 船内・船外カメラ. JAXA (2010年9月). 2019年1月4日閲覧。
  130. ^ a b c きぼう船外実験プラットフォーム利用ハンドブック”. 初版 2-8及び3-10. JAXA (2006年10月). 2019年1月4日閲覧。
  131. ^ a b 宇宙ステーション補給機「こうのとり」7 号機(HTV7)【ミッションプレスキット】”. 付録1-16及び付録1-17. JAXA (2018年9月5日). 2019年1月4日閲覧。
  132. ^ 「きぼう」ハンドブック”. 3.1 各要素の主要諸元. JAXA (2008年4月). 2019年1月4日閲覧。
  133. ^ a b c きぼう船外実験プラットフォーム利用ハンドブック”. 2.3.1 ロボットアーム. JAXA (2010年9月). 2018年12月28日閲覧。
  134. ^ 1Jミッション 2|第2回船外活動:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2008年6月6日). 2019年2月15日閲覧。
  135. ^ a b 「きぼう」与圧壁の厚さはどのくらいですか?”. JAXA. 2018年11月30日閲覧。
  136. ^ a b 国際宇宙ステーションの日本の実験棟 (JEM)の安全設計について(報告)”. JAXA (2013年6月10日). 2018年11月30日閲覧。
  137. ^ a b 「きぼう」日本実験棟船内実験室バンパ高速衝突試験”. JAXA宇宙ステーション・きぼう 広報・情報センター (19999-09-30). 2018年12月21日閲覧。
  138. ^ 音声端末装置(ATU)はどんな機能があるのですか:よくある質問”. JAXA宇宙ステーション・きぼう 広報・情報センター (2010年8月17日). 2018年12月16日閲覧。
  139. ^ a b c d 船内保管室:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年9月12日). 2018年11月30日閲覧。
  140. ^ 若田宇宙飛行士のISSツアー 前編”. 7:36-7:45にかけて. YouTube JAXA公式チャンネル (2014年6月8日). 2018年12月18日閲覧。
  141. ^ a b 「きぼう」ハンドブック”. 4.2 船内保管室. JAXA (2008年4月). 2018年11月30日閲覧。
  142. ^ a b c d JAXAデジタルアーカイブス 船内保管室(ELM-PS)の装置交換機構(EFU)に取り付けられた沿岸海域用ハイパースペクトル画像装置および大気圏/電離圏リモート探知システム実験装置(HREP)”. JAXA (2018年7月13日). 2018年12月28日閲覧。
  143. ^ “ELM Pressurized Section:About Kibo”. JAXA (2008年8月29日). 2019年2月26日閲覧。
  144. ^ 若田宇宙飛行士のISSツアー 前編”. 7:54-8:00にかけて. YouTube JAXA公式チャンネル (2014年6月8日). 2018年12月18日閲覧。
  145. ^ 「きぼう」ハンドブック”. 4.2 船内保管室. JAXA (2008年4月). 2019年1月25日閲覧。
  146. ^ a b 「きぼう」ハンドブック”. 4.3 船外実験プラットフォーム. JAXA (2008年4月). 2019年1月25日閲覧。
  147. ^ 宇宙ステーション補給機(HTV)、「きぼう」日本実験棟訓練”. JAXA宇宙ステーション・きぼう 広報・情報センター (2009年3月25日). 2018年12月26日閲覧。
  148. ^ a b c きぼう船外実験プラットフォーム利用ハンドブック”. 初版 2-7から2-10. JAXA (2006年10月). 2018年12月26日閲覧。
  149. ^ 「きぼう」ハンドブック”. 4.3 船外実験プラットフォーム. JAXA (2008年4月). 2018年11月30日閲覧。
  150. ^ a b c d e “日本マイクログラビティ応用学会誌 Vol.28 No.1 2011 特集2:JEM「きぼう」船外実験プラットフォームを利用した科学(解説) 「きぼう」船外実験プラットフォーム利用の概要”. 日本マイクログラビティ応用学会 (2011年1月19日). 2019年2月25日閲覧。
  151. ^ “ISAS|第10回:「きぼう」完成!船外実験プラットフォーム利用、開始!! /きぼうの科学”. JAXA (2009年7月). 2019年2月26日閲覧。
  152. ^ 「きぼう」ハンドブック”. 4.3.3 構成要素. JAXA (2008年4月). 2018年11月30日閲覧。
  153. ^ a b c d IHI技報 第49巻 第3号(平成21年12月発行)-宇宙開発特集号- 国際宇宙ステーション日本実験モジュール曝露部システムと運用”. IHI (2009年12月). 2018年12月27日閲覧。
  154. ^ a b c d e 「きぼう」ハンドブック”. 4-17から4-23. JAXA (2008年4月). 2018年12月27日閲覧。
  155. ^ a b 船外実験プラットフォーム:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2009年7月16日). 2018年12月27日閲覧。
  156. ^ a b IHI Engineering Review Vol.43 No.1 2010 JEM Exposed Facility System and Operation”. IHI (2010年). 2019年1月15日閲覧。
  157. ^ きぼう船外実験プラットフォーム利用ハンドブック”. 2.3 船外実験プラットフォーム以外の軌道上サービス 2-42から2-50. JAXA (2010年9月). 2018年12月27日閲覧。
  158. ^ きぼう船外実験プラットフォーム利用ハンドブック”. 2.2 きぼう船外実験プラットフォームが提供するサービス 2-36から2-41. JAXA (2010年9月). 2018年12月28日閲覧。
  159. ^ きぼう船外実験プラットフォーム利用ハンドブック”. 初版 2-2及び2-10. JAXA (2006年10月). 2018年12月28日閲覧。
  160. ^ a b c 米国SpaceX CRS-12 (SpX-12)のミッション概要”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年9月20日). 2018年12月28日閲覧。
  161. ^ a b c d e 宇宙ステーション補給機「こうのとり」5 号機 (HTV5)ミッションプレスキット”. 5-16. JAXA (2015年8月21日). 2018年12月28日閲覧。
  162. ^ a b c NASA Space Station On-Orbit Status 27 March 2018 - New Crew Prepping for First Spacewalk”. Spaceref (2018年3月28日). 2018年12月28日閲覧。
  163. ^ a b 「きぼう」運用・利用 「きぼう」有償利用 NanoRacks ISS利用サービス 宇宙ステーション外実験 NanoRacks曝露実験サービス”. 有人宇宙システム株式会社. 2018年12月28日閲覧。
  164. ^ a b 「きぼう」船外利用にかかる民間事業者の企画提案募集について ~「きぼう」利用事業の民間開放 第2弾~:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2012年12月5日). 2018年12月28日閲覧。
  165. ^ a b 「きぼう」の利用状況と今後の予定:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年12月19日). 2018年12月28日閲覧。
  166. ^ a b Instrument Overview - GEDI”. GEDI Ecosystem Lidar. 2018年12月28日閲覧。
  167. ^ a b c 沿岸海域用ハイパースペクトル画像装置および大気圏/電離圏リモート探知システム実験装置(HREP)”. JAXA宇宙ステーション・きぼう 広報・情報センター (2009年9月2日). 2018年12月28日閲覧。
  168. ^ a b きぼう船外実験プラットフォーム利用ハンドブック”. 初版 2-8の図2.1-1. JAXA (2006年10月). 2018年12月26日閲覧。
  169. ^ a b c ポート共有実験装置(MCE):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2015年4月21日). 2018年11月17日閲覧。
  170. ^ a b ECOSTRESS Successfully Installed on Space Station”. ジェット推進研究所 (2018年7月6日). 2019年1月11日閲覧。
  171. ^ 宇宙ステーション補給機「こうのとり」7 号機(HTV7)【ミッションプレスキット】”. 1-1及び5-17. JAXA (2018年11月2日). 2019年1月11日閲覧。
  172. ^ a b きぼう船外設置の宇宙環境計測ミッション装置(SEDA-AP)をISSから廃棄しました:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2004年12月15日). 2018年12月28日閲覧。
  173. ^ きぼう船外実験プラットフォーム利用ハンドブック”. 1.1 きぼう船外実験プラットフォームとは. JAXA (2010年9月). 2018年11月30日閲覧。
  174. ^ 船外実験プラットフォーム:ISS関連用語集”. JAXA宇宙ステーション・きぼう 広報・情報センター. 2018年11月30日閲覧。
  175. ^ a b 船外パレット:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年12月19日). 2018年11月30日閲覧。
  176. ^ a b 「きぼう」日本実験棟の構成 -船外パレット-”. 2007年7月4日時点のオリジナルよりアーカイブ。2019年2月15日閲覧。
  177. ^ 「きぼう」ハンドブック”. 4.4 船外パレット 4-24から4-28. JAXA (2008年4月). 2018年12月28日閲覧。
  178. ^ a b c d e JAXA『「きぼう」で獲得した有人宇宙技術』, 第16章 「きぼう」曝露系システムの開発成果 ~船外パレット p.160-166
  179. ^ 2J/Aミッション 「きぼう」船外パレット:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2009年6月10日). 2019年1月25日閲覧。
  180. ^ 「きぼう」ハンドブック”. 4.4 船外パレット. JAXA (2008年4月). 2019年1月25日閲覧。
  181. ^ a b c d e f ロボットアーム:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年9月12日). 2019年1月25日閲覧。
  182. ^ a b c d e 「きぼう」ハンドブック”. 4.5 ロボットアーム. JAXA (2008年4月). 2019年1月25日閲覧。
  183. ^ a b 1Jミッション 「きぼう」ロボットアーム:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2008年5月28日). 2018年12月3日閲覧。
  184. ^ きぼう船外実験プラットフォーム利用ハンドブック”. 初版 2-6及び2-37. JAXA (2006年10月). 2018年12月28日閲覧。
  185. ^ a b c d e 「きぼう」日本実験棟 運用管制チーム”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年1月13日). 2018年11月13日閲覧。
  186. ^ 「きぼう」ロボットアームの遠隔操作デモンストレーション#3を実施”. JAXA宇宙ステーション・きぼう 広報・情報センター (2011年12月22日). 2012年3月18日閲覧。
  187. ^ ロボットアーム作業は重圧との戦い”. 朝日新聞 (2017年4月24日). 2018年12月2日閲覧。
  188. ^ 「きぼう」のシステム:ロボットアーム/エアロック”. JAXA宇宙飛行士金井宣茂公式ブログ「宇宙、行かない?」 (2017年11月8日). 2018年12月2日閲覧。
  189. ^ MFDマニピュレーター飛行実証試験”. JAXA宇宙ステーション・きぼう 広報・情報センター (1998年6月2日). 2019年1月4日閲覧。
  190. ^ 第2回「きぼう」日本実験棟のロボットアーム操作性評価試験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2002年10月31日). 2019年1月4日閲覧。
  191. ^ 「きぼう」ハンドブック”. 4.5 ロボットアーム. JAXA (2008年4月). 2019年1月25日閲覧。
  192. ^ a b c d e 衛星間通信システム:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年8月19日). 2019年1月25日閲覧。
  193. ^ 「きぼう」ハンドブック”. 4.6 衛星間通信システム. JAXA (2008年4月). 2019年1月25日閲覧。
  194. ^ a b c d JAXA (2017年10月18日). “データ中継技術衛星「こだま」(DRTS)の運用終了について”. 文部科学省. 2019年1月25日閲覧。
  195. ^ a b 宇宙開発利用 我が国の宇宙開発史 第五章日本の有人宇宙技術の発展 (4)日本の実験棟「きぼう」(JEM)”. 文部科学省 (2011年2月). 2019年2月12日閲覧。
  196. ^ 「きぼう」ハンドブック”. 4.6 衛星間通信システム. JAXA (2008年4月). 2019年1月25日閲覧。
  197. ^ JAXA (2011年2月). “平成22年度 宇宙環境利用の展望 第1章 「きぼう」実験運用の概要 - 「きぼう」利用の舞台裏 -”. 1-2. 一般財団法人宇宙システム開発利用推進機構. 2019年1月22日閲覧。
  198. ^ a b JAXA (2010年4月30日). “米国および欧州におけるISS利用状況”. 文部科学省. 2019年1月22日閲覧。
  199. ^ a b c 宇宙ステーション補給機(HTV)HTV2ミッション”. JAXA宇宙ステーション・きぼう 広報・情報センター. 2019年1月22日閲覧。
  200. ^ 「きぼう」日本実験棟において実施されていた、マランゴニ対流実験の1テーマ目が終了しました”. JAXA宇宙ステーション・きぼう 広報・情報センター (2013年2月28日). 2018年12月3日閲覧。
  201. ^ JAXA (2011年2月). “平成22年度 宇宙環境利用の展望 第1章 「きぼう」実験運用の概要 - 「きぼう」利用の舞台裏 -”. 1-1. 一般財団法人宇宙システム開発利用推進機構. 2019年1月22日閲覧。
  202. ^ 「レオナルド」(多目的補給モジュール1):国際宇宙ステーションの組立フライト17A(STS-128)”. JAXA宇宙ステーション・きぼう 広報・情報センター (2009年8月25日). 2019年1月22日閲覧。
  203. ^ 流体物理実験装置(FPEF):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年6月17日). 2018年11月16日閲覧。
  204. ^ 溶液結晶化観察装置(SCOF):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2007年12月28日). 2018年11月16日閲覧。
  205. ^ タンパク質結晶生成装置(PCRF):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年9月14日). 2018年11月16日閲覧。
  206. ^ 画像取得処理装置(IPU):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年9月9日). 2018年11月16日閲覧。
  207. ^ 細胞培養装置(CBEF):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2008年6月16日). 2018年11月16日閲覧。
  208. ^ クリーンベンチ(CB):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年8月2日). 2018年11月16日閲覧。
  209. ^ 温度勾配炉(GHF):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2011年2月8日). 2018年11月16日閲覧。
  210. ^ 多目的実験ラック(MSPR):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年2月16日). 2018年11月22日閲覧。
  211. ^ 燃焼実験チャンバー:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年2月16日). 2018年11月16日閲覧。
  212. ^ 水棲生物実験装置(AQH):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年8月2日). 2018年11月16日閲覧。
  213. ^ 液滴群燃焼実験供試体(GCEM):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年2月16日). 2018年11月16日閲覧。
  214. ^ 国際宇宙ステーション・「きぼう」日本実験棟での燃焼実験に成功~JAXAと山口大学の共同実験 Group Combustion実験(研究代表者:三上真人教授)~”. 国立大学法人 山口大学 (2017年3月3日). 2018年11月16日閲覧。
  215. ^ 沸騰・二相流実験供試体:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年3月16日). 2018年11月16日閲覧。
  216. ^ Atomization実験が始まりました:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年8月29日). 2018年11月16日閲覧。
  217. ^ 次世代水再生実証システム:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年2月1日). 2018年11月16日閲覧。
  218. ^ a b c 宇宙ステーション補給機(HTV) 「こうのとり」5号機の主な搭載品”. JAXA宇宙ステーション・きぼう 広報・情報センター (2015年8月12日). 2019年1月22日閲覧。
  219. ^ 静電浮遊炉(ELF):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2016年1月19日). 2018年11月16日閲覧。
  220. ^ 国際宇宙ステーションNASAステータスレポート #06-35”. JAXA宇宙ステーション・きぼう 広報・情報センター (2006年7月31日). 2019年1月22日閲覧。
  221. ^ → MINUS EIGHTY LABORATORY FREEZER FOR ISS (MELFI)”. ESA. 2019年2月1日閲覧。
  222. ^ SPACE SHUTTLE MISSION STS-131 Experiment Express PRESS KIT/April 2010”. 40ページ目. NASA (2010年4月). 2019年2月1日閲覧。
  223. ^ 国際宇宙ステーション(ISS)/きぼう利用の現状と計画”. 30-32ページ目. 文部科学省 (2010年5月14日). 2019年2月1日閲覧。
  224. ^ International Space Station Facilities Research in Space 2017 and Beyond”. 16ページ目. NASA (2017年). 2019年2月5日閲覧。
  225. ^ 冷凍・冷蔵庫(MELFI):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2007年12月28日). 2018年11月16日閲覧。
  226. ^ a b c EXpedite the PRocessing of Experiments to Space Station Rack (EXPRESS Rack)”. NASA (2019年1月16日). 2019年2月1日閲覧。
  227. ^ EXPRESS Racks|NASA”. NASA (2017年10月14日). 2019年2月5日閲覧。
  228. ^ a b EXPRESS Racks 4 and 5 fact sheet”. NASA (2001年7月). 2019年2月2日閲覧。
  229. ^ 恒久型多目的モジュール(PMM):国際宇宙ステーションの組立フライトULF5(STS-133)”. JAXA宇宙ステーション・きぼう 広報・情報センター (2010年10月26日). 2019年2月1日閲覧。
  230. ^ MISCSIoONn SdYSuTEcMSting Research on the International Space Station using the EXPRESS Rack Facilities”. 4ページ目. NASA (2014年10月). 2019年2月5日閲覧。
  231. ^ MISCSIoONn SdYSuTEcMSting Research on the International Space Station using the EXPRESS Rack Facilities”. 10ページ目. NASA (2014年10月). 2019年2月5日閲覧。
  232. ^ a b International Space Station Facilities Research in Space 2017 and Beyond”. 27ページ目. NASA (2017年). 2019年2月5日閲覧。
  233. ^ NanoRacks Platforms”. NASA (2018年9月26日). 2019年2月5日閲覧。
  234. ^ ELaboratore Immagini TElevisive - Space 2 (ELITE-S2)”. NASA (2019年1月16日). 2019年2月5日閲覧。
  235. ^ NanoRacks Plate Reader”. NASA (2019年1月10日). 2019年2月5日閲覧。
  236. ^ TangoLab-1”. NASA (2019年1月16日). 2019年2月5日閲覧。
  237. ^ Space Acceleration Measurement System-II (SAMS-II)”. NASA (2019年1月23日). 2019年2月5日閲覧。
  238. ^ Microgravity Experiment Research Locker Incubator (MERLIN)”. NASA (2019年1月10日). 2019年2月5日閲覧。
  239. ^ SG100 Cloud Computing Payload (SG100 Cloud Computer)”. NASA (2019年1月16日). 2019年2月5日閲覧。
  240. ^ Long Duration Sorbent Testbed (LDST)”. NASA (2019年1月16日). 2019年2月5日閲覧。
  241. ^ Advanced Plant Habitat (Plant Habitat)”. NASA (2019年1月30日). 2019年2月5日閲覧。
  242. ^ Space Dynamically Responding Ultrasonic Matrix System (SpaceDRUMS)”. NASA (2017年4月26日). 2019年2月5日閲覧。
  243. ^ ISS搭載用静電浮遊炉の概要”. 日本マイクログラビティ応用学会 (2015年1月31日). 2019年2月5日閲覧。
  244. ^ MISCSIoONn SdYSuTEcMSting Research on the International Space Station using the EXPRESS Rack Facilities”. 17ページ目. NASA (2014年10月). 2019年2月5日閲覧。
  245. ^ a b c “ISAS|第6回:PADLES宇宙放射線計測実験がスタート! /きぼうの科学”. JAXA (2009年1月). 2019年2月26日閲覧。
  246. ^ 受動積算型宇宙放射線線量計(PADLES):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2015年11月11日). 2018年11月20日閲覧。
  247. ^ 宇宙放射線リアルタイムモニタ装置:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年3月30日). 2018年11月21日閲覧。
  248. ^ PLT・MMA・UDC:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2009年9月29日). 2018年11月21日閲覧。
  249. ^ 宇宙ステーション補給機(HTV) 「こうのとり」4号機(HTV4)ミッション”. JAXA宇宙ステーション・きぼう 広報・情報センター. 2019年2月1日閲覧。
  250. ^ FPSC冷凍庫, “FROST2” 宇宙で稼働中”. ツインバード工業 (2018年4月). 2019年2月1日閲覧。
  251. ^ a b “宇宙冷蔵庫”誕生秘話――ツインバードの冷蔵庫はいかにして宇宙へと羽ばたいたのか? (1/3)”. ITmedia (2014年4月11日). 2019年2月1日閲覧。
  252. ^ a b “宇宙冷蔵庫”誕生秘話――ツインバードの冷蔵庫はいかにして宇宙へと羽ばたいたのか? (2/3)”. ITmedia (2014年4月11日). 2019年2月1日閲覧。
  253. ^ 宇宙ステーション補給機(HTV) 「こうのとり」4号機(HTV4) 搭載品”. JAXA宇宙ステーション・きぼう 広報・情報センター (2014年1月14日). 2019年2月1日閲覧。
  254. ^ 船内利用:「きぼう」を使ってみませんか”. JAXA宇宙ステーション・きぼう 広報・情報センター (2015年3月31日). 2019年2月1日閲覧。
  255. ^ “宇宙冷蔵庫”誕生秘話――ツインバードの冷蔵庫はいかにして宇宙へと羽ばたいたのか? (3/3)”. ITmedia (2014年4月11日). 2019年2月1日閲覧。
  256. ^ きぼう船外実験プラットフォーム利用ハンドブック”. 3.2.2 船外プラットフォームへの図3.2.2-1. JAXA (2010年9月). 2018年12月25日閲覧。
  257. ^ 我が国独自の線量計で、「きぼう」船外で初めて宇宙放射線環境モニタリング実験を開始(Free-Space PADLES実験):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2015年6月3日). 2019年1月4日閲覧。
  258. ^ 国際競争力ある次世代静止通信衛星の実現に必要な熱制御技術の軌道上実証実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年11月19日). 2019年1月4日閲覧。
  259. ^ きぼう船外実験プラットフォーム利用ハンドブック”. 3.2.4 船外実験プラットフォーム以外の曝露宇宙環境利用. JAXA (2010年9月). 2019年1月4日閲覧。
  260. ^ 「きぼう」船外利用における簡易利用実験手段の概要”. JAXA (2012年4月). 2019年1月4日閲覧。
  261. ^ JEM曝露部搭載型共通バス機器部(APBUS):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2004年12月15日). 2018年11月16日閲覧。
  262. ^ a b 2J/Aミッション:「きぼう」日本実験棟 搭載物”. JAXA宇宙ステーション・きぼう 広報・情報センター (2009年6月10日). 2019年1月22日閲覧。
  263. ^ a b c きぼう船外実験プラットフォーム利用ハンドブック”. 初版 付録C JEM曝露部搭載実験装置の概要について. JAXA (2006年10月). 2018年12月28日閲覧。
  264. ^ 「きぼう」日本実験棟の船外実験プラットフォームに搭載しているMPAC&SEEDの回収作業が行われました。:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2010年4月10日). 2019年1月19日閲覧。
  265. ^ 宇宙環境計測ミッション装置(SEDA-AP)”. JAXA宇宙ステーション・きぼう 広報・情報センター (2004年12月15日). 2018年12月28日閲覧。
  266. ^ 宇宙環境計測ミッション装置(SEDA-AP):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年12月21日). 2018年12月28日閲覧。
  267. ^ 全天X線監視装置(MAXI):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年10月18日). 2018年11月17日閲覧。
  268. ^ 宇宙ステーション補給機(HTV) HTV-1 搭載品”. JAXA宇宙ステーション・きぼう 広報・情報センター (2009年8月27日). 2019年1月22日閲覧。
  269. ^ a b 超伝導サブミリ波リム放射サウンダ(SMILES):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2015年6月18日). 2018年11月17日閲覧。
  270. ^ 超伝導サブミリ波リム放射サウンダ(SMILES)の観測中断について”. JAXA宇宙ステーション・きぼう 広報・情報センター (2010年4月23日). 2010年4月23日閲覧。
  271. ^ a b SMILESの観測ミッション終了と今後の運用について”. 文部科学省 (2011年1月19日). 2018年12月9日閲覧。
  272. ^ 超伝導サブミリ波リム放射サウンダ(SMILES)の成果:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2015年5月14日). 2018年11月17日閲覧。
  273. ^ 宇宙ステーション補給機(HTV)「こうのとり」3号機(HTV3)ミッション”. JAXA宇宙ステーション・きぼう 広報・情報センター. 2019年1月22日閲覧。
  274. ^ REXJトップ”. JAXA. 2019年2月22日時点のオリジナルよりアーカイブ。2019年3月4日閲覧。
  275. ^ 船外実験プラットフォーム用民生品ハイビジョンビデオカメラシステム(COTS HDTV-EF)による地球表面映像取得結果:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2012年9月11日). 2018年11月18日閲覧。
  276. ^ 8/19 CALET こうのとり(HTV5)とともに打ち上がりました|CALET”. 早稲田大学理工学術院理工学研究所 鳥居研究室 (2015年7月29日). 2018年12月11日閲覧。
  277. ^ 国際宇宙ステーション・「きぼう」日本実験棟搭載の高エネルギー電子、ガンマ線観測装置(CALET)により、世界初のテラ電子ボルト(TeV)領域の電子直接観測を開始”. JAXA (2015年10月22日). 2016年2月20日閲覧。
  278. ^ 高エネルギー電子・ガンマ線観測装置(CALET):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2014年4月17日). 2018年11月18日閲覧。
  279. ^ a b c 高エネルギー電子・ガンマ線観測装置 CALET”. JAXA (2016年3月16日). 2018年11月18日閲覧。
  280. ^ CIRCについて”. 宇宙航空研究開発機構. 2016年2月20日閲覧。
  281. ^ JAXAデジタルアーカイブス 次世代ハイビジョンカメラ(HDTV-EF2)を搭載した中型曝露実験アダプター(i-SEEP)の船外実験プラットフォーム(EF)への設置作業の様子”. JAXA (2017年2月8日). 2019年1月25日閲覧。
  282. ^ 中型曝露実験アダプター(i-SEEP):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年2月24日). 2018年11月19日閲覧。
  283. ^ きぼう船外実験プラットフォーム利用ハンドブック”. 2.1.1 微小重力. JAXA (2010年9月). 2019年1月15日閲覧。
  284. ^ “ISS:JEM/Kibo-EF - HREP - eoPortal Directory - Satellite Missions ISS Utilization: JEM/Kibo-EF (Exposed Facility) experiments of USA HREP (HICO-RAIDS Experiment Payload)”. ESA . 2019年2月26日閲覧。
  285. ^ HEO NAC International Space Station Status”. 33ページ目. NASA (2018年8月). 2019年1月13日閲覧。
  286. ^ a b JAXAがHTV6搭載の超小型衛星7機を公開 - 強化した新型放出機構を初使用”. マイナビニュース (2016年11月11日). 2018年11月19日閲覧。
  287. ^ 星出宇宙飛行士、小型衛星放出機構(J-SSOD)を設置:JAXA宇宙飛行士によるISS長期滞在”. JAXA宇宙ステーション・きぼう 広報・情報センター (2012年9月24日). 2018年11月20日閲覧。
  288. ^ 「きぼう」からの小型衛星放出実証ミッションに係る搭載小型衛星の選定結果について”. JAXA (2011年6月15日). 2018年11月23日閲覧。
  289. ^ JEM ペイロードアコモデーションハンドブック - Vol. 8 - 超小型衛星放出インタフェース管理仕様書”. JAXA (2014年4月). 2018年12月28日閲覧。
  290. ^ 4号機の新規開発品について|ファン!ファン!JAXA!”. JAXA (2018年12月28日). 2019年2月12日閲覧。
  291. ^ 革新的衛星技術実証1号機について”. JAXA (2018年12月19日). 2019年2月12日閲覧。
  292. ^ a b c 小型衛星放出機構:ISS関連用語集”. JAXA宇宙ステーション・きぼう 広報・情報センター. 2018年11月20日閲覧。
  293. ^ a b c d 宇宙と人をつなぐ架け橋となるために 小型衛星放出ミッション 主任開発員 和田勝”. JAXA (2014年8月). 2018年11月20日閲覧。
  294. ^ a b 「きぼう」から3カ国の超小型衛星放出 今後は48Uキューブサットへ対応を拡大”. sorae (2018年5月16日). 2018年11月20日閲覧。
  295. ^ a b 油井宇宙飛行士 ISS長期滞在プレスキット”. 4-19ページ目. JAXA (2015年10月7日). 2018年11月20日閲覧。
  296. ^ MicroSat Deployment from the ISS|Kaber Satellite Deployer in LEO”. NanoRacks LLC. 2019年1月4日閲覧。
  297. ^ Meet Space Station’s Small Satellite Launcher Suite | NASA”. NASA (2014年3月3日). 2018年11月20日閲覧。
  298. ^ a b c 超小型衛星放出事業の事業者募集概要 ~事業の一部民営化~”. JAXA (2018年2月27日). 2018年11月20日閲覧。
  299. ^ 利用状況と今後の予定:「きぼう」での実験”. 2015年1月28日. JAXA宇宙ステーション・きぼう 広報・情報センター (2015年3月12日). 2019年1月13日閲覧。
  300. ^ Cloud-Aerosol Transport System (CATS)”. NASA. 2018年12月28日閲覧。
  301. ^ NASA - Cloud-Aerosol Transport System”. NASA. 2018年12月28日閲覧。
  302. ^ ISS to get Cloud Aerosol Transport System, a laser cannon - Daily Mail Online”. Mail Online. 2018年12月28日閲覧。
  303. ^ NASA’s CATS Concludes Successful Mission on Space Station”. NASA (2017年12月7日). 2019年1月13日閲覧。
  304. ^ NASA’s CATS Concludes Successful Mission on Space Station”. Operation Status. NASA (2017年11月14日). 2019年1月13日閲覧。
  305. ^ ドラゴン補給機の12号機がISSに到着”. 宇宙技術開発株式会社 (2017年8月22日). 2018年12月28日閲覧。
  306. ^ 米国SpaceX CRS-15 (SpX-15)のミッション概要”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年7月3日). 2019年1月11日閲覧。
  307. ^ ISSへの補給宇宙船、様々な最新実験機器を積み飛び立つ”. ディスカバリーチャンネル (2018年7月3日). 2019年1月11日閲覧。
  308. ^ ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station”. NASA (2018年8月1日). 2019年1月11日閲覧。
  309. ^ 「きぼう」利用 簡易曝露実験装置(ExHAM)有償利用テーマ通年募集について:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年11月16日). 2018年12月26日閲覧。
  310. ^ 「きぼう」ハンドブック”. 4.3 船外実験プラットフォーム. JAXA (2008年4月). 2018年12月26日閲覧。
  311. ^ 簡易曝露実験装置(ExHAM)を支えるロボティクス技術”. 日本航空宇宙学会. pp. 141-147 (2018年5月). doi:10.14822/kjsass.66.5_141. 2018年12月28日閲覧。
  312. ^ 簡易曝露実験装置(ExHAM):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年3月12日). 2018年11月20日閲覧。
  313. ^ “Space station to host new cosmic ray telescope”. シカゴ大学. (2013年3月11日). http://news.uchicago.edu/article/2013/03/11/space-station-host-new-cosmic-ray-telescope 2013年4月11日閲覧。 
  314. ^ 広報誌 RIKEN 2018”. 16ページ目. 国立研究開発法人理化学研究所 (2018年6月). 2018年11月20日閲覧。
  315. ^ a b c 宇宙航空の最新情報マガジン JAXA's No.065”. JAXA (2016年7月1日). 2018年11月13日閲覧。
  316. ^ a b 運用管制施設”. JAXA宇宙ステーション・きぼう 広報・情報センター (2015年3月2日). 2019年1月25日閲覧。
  317. ^ a b c d e f 運用管制施設 宇宙ステーション運用棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年3月21日). 2018年11月13日閲覧。
  318. ^ a b 「きぼう」 ハンドブック”. 5.3 「きぼう」の運用管制. JAXA (2008年4月). 2018年11月15日閲覧。
  319. ^ 「きぼう」運用管制室が稼働開始:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2008年3月11日). 2019年1月22日閲覧。
  320. ^ つくばで「きぼう」運用管制室オープン”. 朝日新聞 (2008年3月11日). 2019年1月22日閲覧。
  321. ^ 地上で支える人々(1J/Aミッション)”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年3月21日). 2018年11月13日閲覧。
  322. ^ JAXAきぼうフライトディレクタ (@JAXA_JFLIGHT)さん | Twitter”. JAXA Twitter (2018年11月6日). 2018年11月24日閲覧。
  323. ^ a b 「きぼう」日本実験棟 運用管制システム”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年11月24日). 2018年11月13日閲覧。
  324. ^ a b c d e 金井飛行士長期滞在ミッション担当フライトディレクタ概要説明”. JAXA (2017年8月24日). 2018年11月23日閲覧。
  325. ^ JAXA's 018”. JAXA (2008年2月1日). 2018年11月23日閲覧。
  326. ^ a b JAXA's No.070”. JAXA (2017年10月). 2018年10月22日閲覧。
  327. ^ a b 「きぼう」ハンドブック”. 5.3 「きぼう」の運用管制. JAXA (2008年4月). 2018年11月30日閲覧。
  328. ^ 「きぼう」船内実験室利用ハンドブック”. 11ページ目. JAXA (2018年8月). 2018年11月30日閲覧。
  329. ^ a b ISS計画への参加から得られた成果について”. 4-12ページ目. 文部科学省 (2014年5月16日). 2019年1月30日閲覧。
  330. ^ 文化・人文社会科学利用(EPO):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2014年1月29日). 2018年11月15日閲覧。
  331. ^ 人文・社会科学:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター. 2018年11月15日閲覧。
  332. ^ a b c d e f 実験運用管制チーム:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年1月13日). 2018年11月15日閲覧。
  333. ^ a b c d 「きぼう」ハンドブック”. 3.2 「きぼう」運用モード. JAXA (2008年4月). 2018年11月30日閲覧。
  334. ^ a b きぼう船外実験プラットフォーム利用ハンドブック”. 初版 2-6の表2.1.3.1-1 JEM曝露部運用モードの概要. JAXA (2006年10月). 2019年1月29日閲覧。
  335. ^ きぼう船外実験プラットフォーム利用ハンドブック”. 初版 1-13及び1-14. JAXA (2006年10月). 2018年12月7日閲覧。
  336. ^ a b c 第54次/第55次「チーム・きぼう」の紹介 その1”. JAXA宇宙飛行士金井宣茂公式ブログ「宇宙、行かない?」 (2017年8月28日). 2018年11月23日閲覧。
  337. ^ a b 金井宣茂 ISS長期滞在ミッション 長期滞在概要:JAXA宇宙飛行士によるISS長期滞在”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年6月7日). 2018年11月23日閲覧。
  338. ^ 「きぼう」での実験 利用の計画 インクリメント57/58”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年10月4日). 2018年11月23日閲覧。
  339. ^ 実験運用管制官チーム”. JAXA宇宙飛行士金井宣茂公式ブログ「宇宙、行かない?」 (2017年10月16日). 2018年11月22日閲覧。
  340. ^ a b c d e f g h 星出宇宙飛行士 ISS 長期滞在プレスキット”. 付録2.5 運用管制. JAXA (2012年7月10日). 2018年11月21日閲覧。
  341. ^ a b 平成22年度JAROS宇宙環境利用の展望 第1章 「きぼう」実験運用の概要 - 「きぼう」利用の舞台裏 -”. 1-12,13. 一般財団法人宇宙システム開発利用推進機構 (2011年). 2019年2月8日閲覧。
  342. ^ 虎野吉彦. “宇宙ステーション補給機技術実証機(HTV1) プロジェクトに係る事後評価について”. JAXA. 2019年1月18日閲覧。
  343. ^ 宇宙ステーション補給機(HTV) 「こうのとり」(HTV)とは”. JAXA宇宙ステーション・きぼう 広報・情報センター. 2019年1月18日閲覧。
  344. ^ 宇宙ステーション補給機(HTV) 「こうのとり」(HTV)の構成”. JAXA宇宙ステーション・きぼう 広報・情報センター. 2019年1月18日閲覧。
  345. ^ JAXA|H-IIBロケット”. JAXA. 2019年1月18日閲覧。
  346. ^ 宇宙ステーション補給機(HTV) HTV1ミッション”. JAXA宇宙ステーション・きぼう 広報・情報センター. 2019年1月18日閲覧。
  347. ^ 宇宙ステーション補給機「こうのとり」7 号機(HTV7)【ミッションプレスキット】”. 1-1. JAXA (2018年11月2日). 2019年1月18日閲覧。
  348. ^ JAXA | 宇宙ステーション補給機「こうのとり」9号機(HTV9)の大気圏への再突入完了について”. JAXA | 宇宙航空研究開発機構. 2020年11月19日閲覧。
  349. ^ 読売新聞朝刊 2011年6月16日
  350. ^ 「こうのとり」6号機(HTV6)が「きぼう」に運んだ超小型衛星6機の放出に成功:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年1月16日). 2018年11月20日閲覧。
  351. ^ a b JAXA's 特別増刊号”. 特集「きぼう」のさらなる利用拡大へ. JAXA (2016年3月1日). 2018年12月11日閲覧。
  352. ^ きぼう利用戦略:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年8月). 2018年11月20日閲覧。
  353. ^ 国際宇宙ステーション(ISS)「きぼう」日本実験棟からの超小型衛星放出事業の事業者の企画提案募集(「きぼう」利用初の民間開放)について”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年2月23日). 2018年11月20日閲覧。
  354. ^ a b c d JAXAが「きぼう」利用の一部を民営化、超小型衛星放出事業を2社へ移管”. マイナビニュース (2018年6月4日). 2018年11月20日閲覧。
  355. ^ 国際宇宙ステーション(ISS)「きぼう」日本実験棟からの超小型衛星放出事業 民間事業者の選定結果(「きぼう」利用初の民間開放)について”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年5月29日). 2018年11月20日閲覧。
  356. ^ きぼう利用戦略 「きぼう」利用成果最大化に向けて アジェンダ2020 〔第2版〕”. 22ページ目. JAXA (2017年8月). 2018年11月20日閲覧。
  357. ^ 「きぼう」からの超小型衛星の放出機会提供 募集案内 <有償の仕組み(試行版)>”. 6ページ目. JAXA (2014年4月). 2018年11月20日閲覧。
  358. ^ 宇宙ステーション補給機(HTV) 「こうのとり」7号機(HTV7)ミッション”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年). 2018年12月11日閲覧。
  359. ^ JAXA|トピックス(2018年)”. JAXA (2018年11月12日). 2018年12月11日閲覧。
  360. ^ 「きぼう」の利用状況と今後の予定:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年10月10日). 2018年12月11日閲覧。
  361. ^ JAXAきぼう利用ネットワーク(@JAXA_Kiboriyo)さん | Twitter”. JAXA Twitter (2018年11月13日). 2018年12月11日閲覧。
  362. ^ 「こうのとり」7号機(HTV7)大気圏再突入完了と小型回収カプセルの回収にあたって”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年11月11日). 2018年12月11日閲覧。
  363. ^ 宇宙から帰還、カプセル内の実験試料 JAXAに歓喜の到着”. 東京新聞 (2018年11月14日). 2018年12月11日閲覧。
  364. ^ JAXA、宇宙ステーションからの直行便「HSRC」をプレスに公開”. マイナビニュース (2018年11月29日). 2018年12月11日閲覧。
  365. ^ 平成17年度宇宙環境利用の展望 第6章 国際宇宙ステーション(ISS)・セントリフュージ計画”. 100ページ目,107ページ目. 一般財団法人宇宙システム開発利用推進機構 (2006年). 2018年12月7日閲覧。
  366. ^ JAXA『宇宙にかける「きぼう」』, 第2章 宇宙ステーション計画参加活動の全体経緯 2-50..
  367. ^ 生命科学実験施設 セントリフュージ”. JAXA宇宙ステーション・きぼう 広報・情報センター (2005年12月20日). 2018年12月7日閲覧。
  368. ^ 生命科学実験施設(セントリフュージ):ISS関連用語集”. JAXA宇宙ステーション・きぼう 広報・情報センター. 2018年12月7日閲覧。
  369. ^ 平成17年度宇宙環境利用の展望 第6章 国際宇宙ステーション(ISS)・セントリフュージ計画”. 一般財団法人宇宙システム開発利用推進機構 (2006年). 2018年12月7日閲覧。
  370. ^ 平成17年度宇宙環境利用の展望 第6章 国際宇宙ステーション(ISS)・セントリフュージ計画”. 108ページ目. 一般財団法人宇宙システム開発利用推進機構 (2006年). 2018年12月7日閲覧。
  371. ^ JAXA『宇宙にかける「きぼう」』, 第2章 宇宙ステーション計画参加活動の全体経緯 2-64,2-65.
  372. ^ ISS計画への参加から得られた成果について”. 2-3ページ目. 文部科学省 (2014年5月16日). 2019年1月30日閲覧。
  373. ^ ISS計画への参加から得られた成果について”. 19-32ページ目. 文部科学省 (2014年5月16日). 2019年1月30日閲覧。
  374. ^ ISS計画への参加から得られた成果について”. 33-34ページ目. 文部科学省 (2014年5月16日). 2019年1月30日閲覧。
  375. ^ ISS計画への参加から得られた成果について”. 35-36ページ目. 文部科学省 (2014年5月16日). 2019年1月30日閲覧。
  376. ^ a b c ISS計画への参加から得られた成果について”. 45-48ページ目. 文部科学省 (2014年5月16日). 2018年12月18日閲覧。
  377. ^ ISS計画への参加から得られた成果について”. 19ページ目. 文部科学省 (2014年5月16日). 2018年12月18日閲覧。
  378. ^ これまでに得られた成果”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年9月28日). 2018年12月13日閲覧。
  379. ^ 国際宇宙ステーション 人類への恩恵”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年6月7日). 2018年12月13日閲覧。
  380. ^ a b c 日本の宇宙開発の力を見せたい…日の丸飛行士座談会(中)”. 読売新聞. 2017年9月3日時点のオリジナルよりアーカイブ。2019年3月5日閲覧。
  381. ^ 三菱電機 DSPACE コラム:読む宇宙旅行 宇宙ステーション400億円の成果って?向井千秋さん熱弁:林公代”. 三菱電機 (2014年7月10日). 2019年1月22日閲覧。
  382. ^ 「きぼう」運用管制チームがNASAから表彰されました”. JAXA宇宙ステーション・きぼう 広報・情報センター (2008年5月16日). 2018年12月3日閲覧。
  383. ^ 1Jミッションで活躍した「きぼう」運用管制チームがNASAから表彰されました”. JAXA宇宙ステーション・きぼう 広報・情報センター (2008年8月5日). 2018年12月3日閲覧。
  384. ^ 日本航空宇宙学会 学会賞受賞者一覧 第1回(平成3年度)~第26回(平成28年度)”. 一般社団法人日本航空宇宙学会 (2019年2月). 2019年3月5日閲覧。
  385. ^ 宇宙実験施設 (「きぼう」日本実験棟)”. 公益財団法人日本デザイン振興会 (2010年9月29日). 2018年11月13日閲覧。
  386. ^ 第4回ロボット大賞 大賞 アーカイブ - 2010受賞ロボット”. ロボット大賞 事務局 (2010年11月). 2018年11月25日閲覧。
  387. ^ 「きぼう」ロボットアームが「第4回ロボット大賞」にて優秀賞および日本科学未来館館長賞を受賞しました!:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2010年11月25日). 2018年11月25日閲覧。
  388. ^ 実用化技術賞|賞区分|日本ロボット学会”. 一般社団法人日本ロボット学会 (2011年1月1日). 2018年11月25日閲覧。
  389. ^ 「きぼう」ロボットアームなどによる組立技術、「日本ロボット学会 実用化技術賞」を受賞!:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2011年9月12日). 2018年11月25日閲覧。
  390. ^ JAXA's No.041”. JAXA (2011年11月1日). 2018年11月13日閲覧。
  391. ^ 「きぼう」、アメリカ航空宇宙学会「Space Automation and Robotics Award 2011」受賞!”. JAXA (2011年10月4日). 2018年11月13日閲覧。
  392. ^ Space Automation and Robotics Award”. アメリカ航空宇宙学会(AIAA) (2011年9月28日). 2018年11月13日閲覧。
  393. ^ 「REX-J」開発/運用チーム 日本機械学会 宇宙工学部門 一般表彰スペースフロンティアを受賞!”. JAXA宇宙ステーション・きぼう 広報・情報センター (2014年4月28日). 2018年11月23日閲覧。
  394. ^ 「スプライト及び雷放電の高速測光撮像センサ(JEM-GLIMS)」の研究成果がNASAから表彰されました”. JAXA宇宙ステーション・きぼう 広報・情報センター (2014年6月25日). 2018年11月26日閲覧。
  395. ^ Space Station Top Results for Discoveries Announced | NASA”. NASA (2014年6月19日). 2018年11月26日閲覧。
  396. ^ 平成28年表彰受賞者が決定しました|一般社団法人 電気学会”. 一般社団法人電気学会 (2016年4月20日). 2018年11月28日閲覧。
  397. ^ JEM-GLIMS”. 北海道大学 (2016年5月27日). 2018年11月28日閲覧。
  398. ^ 「きぼう」で行われた日本の実験成果が、2016年の ISS Research Awards "Space Station Top Results for Discoveries"を受賞しました”. JAXA宇宙ステーション・きぼう 広報・情報センター (2016年7月15日). 2018年11月26日閲覧。
  399. ^ Space Engineering 宇宙工学部門ニュースレター No.32(Web版)2016年度部門賞”. 一般社団法人日本機械学会 (2018年2月23日). 2019年3月6日閲覧。
  400. ^ 「きぼう」からの小型衛星放出チーム 日本機械学会 宇宙工学部門 宇宙賞を受賞!”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年4月7日). 2018年11月22日閲覧。
  401. ^ 「きぼう」からの超小型衛星放出の利用促進活動が、2017年の ISS Research Awards(Innovation Award- Commercialization分野)を受賞!!”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年7月21日). 2018年11月26日閲覧。
  402. ^ 日本の実験棟「きぼう」(JEM)エアロックチームが、JSC Group...”. JAXA Houston Office Facebook (2017年7月25日). 2018年11月29日閲覧。
  403. ^ 平成29年度日本燃焼学会表彰”. 一般社団法人日本燃焼学会 (2017年11月). 2018年11月29日閲覧。
  404. ^ 報告 日本燃焼学会より技術賞受賞 「国際宇宙ステーションにおける液滴群燃焼実験装置(GCEM)の開発」”. 株式会社IHI検査計測 (2018年4月). 2018年11月29日閲覧。
  405. ^ 「きぼう」簡易曝露実験装置(ExHAM)開発/運用チームが日本機械学会の宇宙工学部門スペースフロンティア受賞”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年4月6日). 2018年11月23日閲覧。
  406. ^ 「きぼう」超小型衛星放出プラットフォームにおける取組みが文部科学大臣表彰「科学技術賞」を受賞”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年4月19日). 2018年11月22日閲覧。
  407. ^ 平成30年度 科学技術分野の文部科学大臣表彰 科学技術賞 受賞者一覧”. 文部科学省 (2018年4月10日). 2018年11月22日閲覧。
  408. ^ 「きぼう」での流体実験の研究成果により、COSPAR 2018で"Zeldovich Medal"を受賞:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年8月14日). 2018年11月28日閲覧。
  409. ^ Zeldovich Medals|cospar”. Committee on Space Research (2018年8月7日). 2018年11月28日閲覧。
  410. ^ 「きぼう」で行われた日本の実験成果が、ISS R&D Conference において、"2018 ISS Award for Compelling Results"を受賞しました”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年7月27日). 2018年11月26日閲覧。
  411. ^ JAXA、「きぼう」での対流実験により熱コレ2018で最優秀動画賞を受賞”. 財経新聞 (2018年11月7日). 2018年11月28日閲覧。
  412. ^ ミッションダイジェスト「きぼう」第2回組み立てミッションSTS-124(1J)”. 7:43-7:52にかけて. YouTube JAXA公式チャンネル (2009年4月7日). 2018年12月3日閲覧。
  413. ^ STS-124 NASAステータスレポート#09:NASAステータスレポート(2008年まで)”. JAXA宇宙ステーション・きぼう 広報・情報センター (2008年6月5日). 2019年1月22日閲覧。
  414. ^ 「きぼう」船内実験室打上げ・星出宇宙飛行士搭乗ミッションの結果について”. 7ページ目 【参考2】ミッション中の主な課題と対応. JAXA (2008年6月18日). 2018年12月3日閲覧。
  415. ^ 超伝導サブミリ波リム放射サウンダ(SMILES)のサブミリ波受信系異常の現状について” (2010年5月26日). 2010年5月28日閲覧。
  416. ^ 第2回「きぼう」有償利用テーマの選定結果及び追加募集について”. JAXA (2009年6月10日). 2018年12月9日閲覧。
  417. ^ 宇宙ステーションから持ち帰った植物種子が紛失 - JAXAが発表”. マイナビニュース (2010年5月14日). 2018年12月9日閲覧。
  418. ^ カボチャの種、NASAで発見/宇宙に運ばれず”. 四国新聞社 (2010年6月17日). 2018年12月9日閲覧。
  419. ^ “「きぼう」船内の冷却水リークについて”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年7月31日). 2018年12月10日閲覧。
  420. ^ “「きぼう」船内の冷却水リークについて(続報)”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年8月13日). 2018年12月10日閲覧。
  421. ^ “「きぼう」冷却水リークについて(続報)”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年8月30日). 2018年12月10日閲覧。
  422. ^ JAXA『宇宙にかける「きぼう」』, 第5章 日本の宇宙実験システムJEM の技術開発 [Ⅰ] ―有人宇宙システム技術(与圧系)の開発と将来展望― 5-8.
  423. ^ “筑波宇宙センター 展示館「スペースドーム」”. JAXA. 2018年11月22日閲覧。
  424. ^ “JAXA's No.042”. JAXA (2012年1月1日). 2018年11月7日閲覧。
  425. ^ SPACE EXPO 宇宙博 2014|NASA・JAXAの挑戦”. 2014年9月1日時点のオリジナルよりアーカイブ。2019年1月25日閲覧。






きぼうと同じ種類の言葉


固有名詞の分類


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「きぼう」の関連用語

きぼうのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



きぼうのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのきぼう (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS