過渡応答(振動)
定常状態にある振動系になんらかの外力が加わって、ほかの定常状態へ移行する途中の状態のこと。ある振動系を励振すると、その系の固有振動数の振動と、励振振動数の振動とが混ざった振動を生じ、時間とともに固有振動数の振動は消滅して、励振振動数の振動のみが持続する。この固有振動数の振動が消滅するまでの振動が過渡応答で、時間的に変化するものである。過渡応答には、励振の種類に応じてインパルス応答、ステップ応答などがある。
過渡応答(操縦安定性)
過渡的な操舵入力に対するクルマの応答をいう。おもな過渡応答にはステップ応答、パルス応答などがある。過渡応答試験では、このような過渡的な操舵入力のほか、加減速入力や外乱を加えて、これに対するクルマの過渡的な応答特性をヨー角速度、ロール角などで観察する。そのとき、応答のゲインとともに、応答遅れや入力後の収束が重要な評価項目になる。車速依存性が大きく、あらゆる車速で評価することも重要である。操縦安定性の定常応答は、当初からクルマの基礎的な特性として、また比較的取り扱いが簡単なことから研究されてきたが、最近は、より人間の感性にマッチしたクルマとするために、過渡応答の解析、改善が重視されている。
反対語 定常応答参照 過渡状態
過渡現象
(過渡応答 から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/07/14 17:44 UTC 版)
Jump to navigation Jump to search過渡現象(かとげんしょう、英: transient phenomena)は、ある定常状態から別の定常状態に変化するときに、いずれの状態とも異なり時間的に状態が変化する非定常状態になる現象のことである。
電気回路における過渡現象
電気回路において、抵抗、インダクタンス、コンデンサなどの素子を組み合わせた回路に対して、直流電圧または交流電圧を印加しているときの電流や電圧の変化は回路理論で扱われる。
同様の回路に対して、過渡現象とは、
- 急に電圧を加える
- 急に電圧を取り去る
- 素子の回路定数が変化する
といった変化が発生した場合に、それまでの素子電圧や電流が一定の状態(定常状態)であったものに変化が生じ、十分に時間が経過した後に別の定常状態に到達するまでの間、時間的に変化する電圧や電流の振る舞いのことを指す[1]。
過渡現象の解析方法
過渡現象解析の基本は、キルヒホッフの法則により電圧あるいは電流(電荷)に関する微分方程式を作り、一般解を求め、さらに初期条件から定数を決定することである[2]。
例えば、直列のRLC回路回路に起電力E (t ) を加える場合、
-
この節の加筆が望まれています。
質量・バネ・ダンパモデルに加振力f (t ) を加えたときの運動方程式は次式である(減衰振動を参照):
-
この項目は、電子工学に関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めています(Portal:エレクトロニクス)。
-
- 過渡応答のページへのリンク