連続な群作用
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/11/22 20:14 UTC 版)
G が位相群、X が位相空間であるとき、写像 G × X → X がG × X の積位相に関して連続であるような G の X への連続群作用 (continuous group actions) を考えることもよくある。この場合、位相空間 X を G-空間 (G-space) とも呼ぶ。任意の群は離散位相に関する位相群と見ることができるから、これは実際には一般化になっている。既に述べた各種概念はこの文脈でもそのまま考えることができるが、G-空間の間の射としては G の作用と両立する「連続写像」を考えるのが普通である。商 X/G には X から誘導される商位相を入れて位相空間としたものを、この作用に関する商空間 (quotient space) と呼ぶ。正則、自由、推移的な作用に対する同型射について上述した主張は、連続群作用に対してはもはや正しくない。 G が位相空間 X に作用する離散群であるとき、作用が固有不連続あるいは真性不連続 (properly discontinuous) であるのは、X の各点 x に対して開近傍 U が存在して、g(U) ∩ U ≠ ∅ となるような G の元 g 全体成す集合が、ただ一つ単位元のみからなるようにできるときである。X が別の位相空間 Y の正則被覆空間であるとき、デック変換群の X への作用は固有不連続かつ自由である。群 G の弧状連結位相空間 X への、任意の自由かつ固有不連続な作用は、このようにして得られる。商写像 X ↦ X/G は正則被覆写像であり、デック変換群は G の X への作用によって与えられる。さらに、X が単連結ならば X/G の基本群は G に同型である。これらの結果は (Brown 2006) で、適当な局所条件の下での、離散群のハウスドルフ空間への不連続作用の軌道空間の基本亜群や、空間の基本亜群の軌道亜群などを含む形に一般化されている。これにより、対称平方の基本群などが計算できるようになる。 群 G の局所コンパクト空間 X への作用が余コンパクト (cocompact) であるとは、X のコンパクト部分集合 A で GA = X となるようなものが存在するときに言う。完全不連続作用に対しては、余コンパクト性は商空間 X/G のコンパクト性に同値である。 G の X への作用が固有 (proper) であるとは、写像 G × X → X × X; (g, x) ↦ (gx, x) is a 固有写像 (proper map) であるときに言う。
※この「連続な群作用」の解説は、「群作用」の解説の一部です。
「連続な群作用」を含む「群作用」の記事については、「群作用」の概要を参照ください。
- 連続な群作用のページへのリンク