固有写像とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 固有写像の意味・解説 

固有写像

(proper map から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/11/08 03:02 UTC 版)

数学において、位相空間の間のある函数固有写像(こゆうしゃぞう、: proper map)であるとは、コンパクト部分集合に対するその逆像がコンパクトであることをいう。代数幾何学において、類似の概念は固有射と呼ばれる。

なお、「固有」はproperの直訳であるが、properには「適切な」「妥当な」「ちゃんとした」といった意味もあり[1][2]、proper embeddingを「適切な埋め込み」と訳す例もある[3]

定義

二つの位相空間の間の函数 f : XY固有(proper)であるとは、Y 内のすべてのコンパクト集合原像X においてコンパクトであることをいう。

この他にもいくつかの異なる定義がある。例えば、連続写像 f が固有であるとは、それが閉写像であり、Y 内のすべての点の原像がコンパクトであることをいう。Y が局所コンパクトかつハウスドルフであるなら、それらの定義は同値となる。この事実の証明についてはこの節の最後を参照されたい。より抽象的に、f が固有であるとは f が普遍的に閉(universally closed)であること、すなわち任意の位相空間 Z に対して、写像

f × idZ: X × ZY × Z

が閉であることをいう。これらの定義は、Xハウスドルフであり、Y局所コンパクトハウスドルフであるときには一致する。

XY距離空間であるときの、より直感的な定義は次のものである:ある位相空間 X の無限点列 {pi} が無限大に逃げる(escapses to infinity)とは、すべてのコンパクト集合 SX に対して高々有限個の点 pi のみが S に含まれることをいう。連続写像 f : XY が固有であるとは、X において無限大に逃げるすべての点列 {pi} に対して、{f(pi)} が Y において無限大に逃げることをいう。

この最後の点列のアイデアは、列固有(sequentially proper)の概念と関連するように思われる。この点については参考文献を見られたい。

証明




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「固有写像」の関連用語

固有写像のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



固有写像のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの固有写像 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS