積位相とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 積位相の意味・解説 

積位相

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/12/22 16:58 UTC 版)

位相幾何学とその周辺において、直積空間(ちょくせきくうかん、: product space)とは位相空間の族の直積直積位相 (product topology) と呼ばれる自然な位相英語版を入れた空間のことである。この位相は他の、もしかするとより明らかな、箱位相英語版と呼ばれる位相とは異なる。箱位相も直積空間に与えることができ、有限個の空間の直積では直積位相と一致する。しかしながら、直積位相は位相空間の圏における圏論的積であるという意味で「正しい」位相である。(一方箱位相は細かすぎる。)これが直積位相が「自然」であるという意味である。

定義

( ( Xi , Oi ) ) iI位相空間とし、

これは直積空間が位相空間の圏におけるであることを示している。上の普遍性から写像 f : Y → X が連続であることと fi = pi o f がすべての i ∈ I に対して連続であることが同値であることが従う。多くの場合において component function fi が連続であることを確認する方が易しい。写像 f : Y → X が連続であるかどうかを確認することは通常より難しい。pi が連続であるという事実を何らかの方法で使おうとする。

任意の i ∈ I に対して、射影 pi : X → Xi開写像である。逆は正しくない。W が直積空間の部分空間であってすべての Xi への射影が開であっても、WX において開とは限らない。(例えば W = R×R \ (0,1)×(0,1) を考えよ。)pi : X → Xi は一般には閉写像でない。(例えば、2 つの R の直積空間 R×R について、U = { ( x, y )∈R×R | xy = 1 }R×R閉集合であるが、p1(U) = p2(U) = R \{0}R の閉集合でない。)

直積空間における閉包内部について次のことがいえる。任意の i ∈ I に対して Si ⊂ Xi であるような集合族 ( Si ) iI に対して、

が成り立つ。I が有限集合 I = { 1, 2, 3, …, n } のときは、S1X1 , S2X2 , … , SnXn であるような集合 S1 , S2 , … , Sn に対して、

が成り立つ[1]

直積位相は次の事実により各点収束の位相 (topology of pointwise convergence) とも呼ばれる。X における点列(あるいはネット)が収束することとその空間 Xi へのすべての射影が収束することは同値である。とくに、I 上のすべての実数関数からなる空間 X = RI を考えると、直積空間における収束は関数の各点収束と同じである。

直積位相についての重要な定理はチコノフの定理である: 任意のコンパクト空間族の直積空間はコンパクトである。これは有限個のコンパクト空間の場合について示すのは容易だが、一般の場合の主張は選択公理と同値である。

他の位相的概念との関係

  • 分離性
  • コンパクト性
    • コンパクト空間の任意の直積はコンパクトである(チコノフの定理)。
    • 局所コンパクト空間の直積が局所コンパクトとは限らない。しかしながら、有限個を除くすべてがコンパクトであれば局所コンパクトである。(この条件は必要かつ十分である。)
  • 連結性
    • 連結(resp. 弧状連結)空間の任意の直積は連結(resp. 弧状連結)である。
    • hereditarily disconnected space の任意の直積は hereditarily disconnected である。

選択公理

選択公理は、空でない集合たちの族の積が空でないという主張と同値である。証明は十分簡単である。各集合から元を選んで積において代表元を見つけるだけでよい。逆に、積の代表元は各成分からの元をちょうど1つずつ含む集合である。

選択公理は積空間の研究において再び現れる。例えば、コンパクト集合に関するチコノフの定理は選択公理と同値なより複雑かつ微妙な主張の例である。

関連項目

脚注

参考文献




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「積位相」の関連用語

積位相のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



積位相のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの積位相 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS