生体分子におけるホモキラリティーの起源
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/12/16 04:04 UTC 版)
「ホモキラリティー」の記事における「生体分子におけるホモキラリティーの起源」の解説
地球生命におけるホモキラリティーの起源は多くの研究にも関わらず未解決である。不斉合成を行うにはキラル分子が必要であることは十分に確立している。化学進化により地球上でラセミ体のアミノ酸(D,L-アミノ酸)が生成していたと考えられるが、どの様にホモキラルになったのかはわからない。 考えられている起源のひとつは、原始惑星系において何らかの天体から発せられた紫外円偏光によって、ある分子のエナンチオマーのうち一方が選択的に光分解反応を起こし、残ったエナンチオマーが優勢になりそれが地球に輸送されたという説である。この説の証拠としては、太陽系形成初期からあまり変質していないと考えられているマーチソン隕石にアミノ酸が検出され、このアミノ酸がわずかに L体が優勢だったことである。また、オリオン大星雲の星形成領域では生まれたばかりの大質量星が周囲を円偏光で照らし出している様子が観測されており、この説を補強するものとなっている。 隕石中のアミノ酸のeeはいずれも L-アミノ酸が優勢であった。しかし、L-アミノ酸というと、何か化学的同一性があるように思われるが、実際はエミール・フィッシャーが糖の命名法に準じて命名したにすぎず、それぞれのアミノ酸は当然違った化学的進化によって生成する。よって、たとえば化学進化により光学分割が行なわれた場合アラニンが L体であったとしてもトリプトファンが L体になるとは保証されない。そもそもキラル炭素を持たないグリシンを除くすべてのアミノ酸が同時に L体になることを説明する理論や実験は知られていない。 この問題から、ラセミ体のアミノ酸が生成した後に、何らかの選別過程によってホモキラリティーが生じるとする説もある。たとえば、奈良女子大学の小城勝相らは D,L-アスパラギン (D,L-Asn) は再結晶に際して結晶化が対掌体過剰 (ee) を生成し、共存するアミノ酸も同じ ee で共晶することを示した。このことから小城らは、再結晶がすべてのアミノ酸が同じ立体配置を与える機構であり、1種類のアミノ酸だけの不斉合成は困難でも混合物となった D,L-アミノ酸は本来高い ee を生成する性質を持ち、最初に晶出する結晶場が結晶化の方向性を決めると考えた。この研究によるとホモキラリティーは地球起源であり、アミノ酸の種類によっては実際に 100%ee の結晶を与えることも示されている。 マーチソン隕石に見つけられたアミノ酸のeeはせいぜい 1-2% にすぎない。実験室で円偏光を用いた光解離実験が行なわれているがその結果得られる ee はせいぜい数%以下 (最大 10% 程度)であり、しかも分解反応であるのでアミノ酸の量もごくわずかにならない限り意味のある ee はあらわれない。そのため現在の生体分子で示されるような 100%ee に近いホモキラリティーを得るためには不斉増幅が必要である。小城らの研究では L体が優勢になるか D体が優勢になるかはどちらが先に結晶化するかという偶然で決まるとされており、L-アミノ酸の優勢は偶然に起きたと言うことになる。
※この「生体分子におけるホモキラリティーの起源」の解説は、「ホモキラリティー」の解説の一部です。
「生体分子におけるホモキラリティーの起源」を含む「ホモキラリティー」の記事については、「ホモキラリティー」の概要を参照ください。
- 生体分子におけるホモキラリティーの起源のページへのリンク