無限アーベル群
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/08/01 22:34 UTC 版)
もっとも単純な無限アーベル群は無限巡回群 Z である。任意の有限生成アーベル群 A は Z の適当な r 個のコピーと有限個の素冪位数巡回群の直和に分解可能なアーベル群との直和に同型である。この場合、分解は一意ではないけれども、上記の定数 r は一意に定まり(A の階数と呼ばれる)、分解に現れる素数冪は全体として有限巡回直和因子すべての位数を一意的に決定する。 これと対照に、一般の無限生成アーベル群の分類は完全とは程遠いものしか知られていないことを理解しなければならない。可除群(任意の自然数 n と a ∈ A に対し方程式 nx = a が常に解 x ∈ A を持つような群 A)は完全な特徴づけが知られている無限アーベル群の重要なクラスの一つである。任意の可除群は、有理数の加法群 Q といくつか適当な素数 p に対するプリューファー群 Qp/Zp を直和因子に持つ直和に同型で、それぞれの種類の直和因子の数は濃度の意味で一意に決定される。さらに言えば、可除群 A が何らかのアーベル群 G の部分群となるとき、A は G における直和補因子を持つ(すなわち、G の適当な部分群 C で G = A ⊕ C なるものがとれる)。したがって、可除群はアーベル群の圏における入射対象であり、逆に任意の入射アーベル群は可除である(ベーアの判定法(英語版))。非零可除部分群を持たないアーベル群は被約 (reduced) であるという。 対極的な性質を持つ無限アーベル群の重要な二つのクラスに、ねじれ群(英語版)とねじれのない群(英語版)がある。例えば、加法群の商 Q/Z はねじれアーベル群の、加法群 Q はねじれのないアーベル群のそれぞれ例になっている。 ねじれ群でもねじれのない群でもないアーベル群は混合群 (mixed group) という。アーベル群 A とその(最大)ねじれ部分群 T(A) に対して、剰余群 A/T(A) はねじれがない。しかし一般に、ねじれ部分群は A の直和因子とは限らない(つまり A は T(A) ⊕ A/T(A) に同型でない)から、混合群の理論はねじれ群とねじれのない群の理論を単純に合わせればよいという話にはならない。
※この「無限アーベル群」の解説は、「アーベル群」の解説の一部です。
「無限アーベル群」を含む「アーベル群」の記事については、「アーベル群」の概要を参照ください。
- 無限アーベル群のページへのリンク