正規形とは? わかりやすく解説

正規化

(正規形 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/02/24 03:26 UTC 版)

正規化(せいきか、英語: normalization)とは、データなどを一定の規則に基づいて変形し、利用しやすくすること。言い換えると、正規形でないものを正規形(比較・演算などの操作のために望ましい性質を持った一定の形)に変形することをいう。多くの場合、規格化と訳しても同義である。

用語「正規化」は、非常に多くの分野で使われていて、分野によって意味も大きく異なるので、頻度が高い分野についてそれぞれ個別に説明する。

ベクトル

ノルムが定義されたベクトル空間のベクトル v に対し、それにノルムの逆数 ‖ v ‖−1 を掛けてノルムが 1 であるベクトルにすることを、正規化という。

なお、数学的なベクトルでなく、情報科学分野で数列を意味するベクトルの正規化は、この意味での正規化ではなく、後で述べる数量の正規化になる。多変量データをベクトル空間に表した場合などはどちらの意味にもとれ、結果が定数倍異なるので、注意が必要である。

波動関数

量子力学で現れる波動関数 Ψ は二乗可積分関数の空間のベクトルとみなすことができる。この意味でベクトル Ψ は正規化されることが多い。物理的には、この操作は全空間での存在確率の合計を 1 にすることと解釈される。

代数多様体の正規化

ネーターの正規化定理

数量

数量を代表値で割るなどして無次元量化し、互いに比較できるようにすることを、正規化という。

正規化した結果は単位系によらない。したがって、正規化することによって、たとえば身長体重など、次元が異なりそのままでは比較できない数量が比較できる。次元が同じでも、の1日の気温変化のように、条件が異なるデータも正規化によって比較しやすくなる。

正規化は特に多変量解析の前処理として行われ、この用途の正規化を特徴軸の正規化という。

正規化の方法には様々なものがあり、次の2つが基本的である。

  1. 二乗平均平方根が 1 になるよう、線形変換比例変換)をする。
  2. 平均が 0、分散が 1 になるよう、アフィン変換をする。

どちらが適しているかは、どのようなデータをどのような解析のために正規化するかによる。多変量解析には2.が用いられる。

用途によっては、同じように比例変換やアフィン変換をするのでも、最大値が 1、最小値が 0(または −1)となるように正規化をすることもある。また、べき乗して歪度を 0 にする、あらかじめ与えられた分布に一致させるなど、もっと強い正規化が用いられることもある。

パターン認識

パターン認識の前処理として、対象の特徴をあらかじめ定められた基準に沿うように加工することを、正規化という。

文字など2次元情報の場合、平行移動して位置をそろえる位置の正規化と、伸縮で大きさをそろえる大きさの正規化(縦の伸縮と横の伸縮とは個別に調整する)が、最も基本的な正規化である。これは、各標本点のX座標とY座標をデータ列とみなし、それぞれに「特徴軸の正規化」を施したことに相当する。

確率分布

確率密度関数については、横軸をアフィン変換して平均を 0、分散を 1 にすることを正規化という。正規化することによって、標準正規分布関数との、または確率密度関数どうしの比較が容易になる。標準化、基準化ともいう。

確率密度関数の正規化定数

関数を定積分した逆数正規化定数英語版 (normalizing constant) という。確率密度関数は台で定積分した値が 1 でなければならない。関数に正規化定数を掛けることによって、(確率密度関数の他の要件も満たせば)確率密度関数が作れる。

例えば、次の関数と台があったときに、

このページは数学の曖昧さ回避のためのページです。一つの語句が複数の意味・職能を有する場合の水先案内のために、異なる用法を一覧にしてあります。お探しの用語に一番近い記事を選んで下さい。このページへリンクしているページを見つけたら、リンクを適切な項目に張り替えて下さい。

正規形(canonical form)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/08/26 13:40 UTC 版)

x64」の記事における「正規形(canonical form)」の解説

64ビットモードでは、仮想アドレス64ビットであるものの、実際実装では、264バイト(16EB)のすべてを使用できるようにはなっていない。ほとんどのオペレーティングシステムアプリケーションは、近い将来含めてそのような大きなアドレス空間使用しないフル64ビットという大きなアドレス空間サポートは、複雑さアドレス変換コスト増やすだけでメリットはない。そのため、AMD最初AMD64実装では、48ビット仮想アドレス空間のみを使用することにした。さらに仮想アドレスビット48から63は、ビット47の値がコピーされなければならないことにした。そうでない仮想アドレス使用した場合は、プロセッサー例外エラー発生する。このルール従ったアドレスは、正規形(canonical form)と呼ばれる。正規形のアドレスは、0から00007FFF'FFFFFFFFとFFFF8000'00000000からFFFFFFFF'FFFFFFFFの範囲であり、合計で256TBの仮想アドレス空間使用可能である。

※この「正規形(canonical form)」の解説は、「x64」の解説の一部です。
「正規形(canonical form)」を含む「x64」の記事については、「x64」の概要を参照ください。

ウィキペディア小見出し辞書の「正規形」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「正規形」の関連用語











正規形のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



正規形のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの正規化 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaのx64 (改訂履歴)、メビウス変換 (改訂履歴)、指数表記 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS