核オーバーハウザー効果とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > ウィキペディア小見出し辞書 > 核オーバーハウザー効果の意味・解説 

オーバーハウザー効果

(核オーバーハウザー効果 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/01/23 04:42 UTC 版)

オーバーハウザー効果(オーバーハウザーこうか、: Overhauser effect)とは、あるスピン磁気共鳴遷移を共鳴周波数の電磁波を照射したときに、そのスピンと磁気的に相互作用している別のスピンの磁気共鳴の強度が変化する現象である。発見の経緯から単にオーバーハウザー効果といった場合には、照射される共鳴線が電子スピン共鳴である場合を指し、照射される共鳴線が核磁気共鳴である場合には核オーバーハウザー効果(nuclear Overhauser effect、NOE)と呼ばれる。

歴史

1953年にアルバート・オーバーハウザーによる理論計算により、金属の伝導電子の電子スピン共鳴の遷移を飽和させると、金属の核磁気共鳴のシグナル強度が著しく増強されることが予測された[1]。これは学会発表時には熱力学第二法則に反するのではないかと強い批判を受けた。しかし、実際には1953年にはすでに、T. R. Carverとチャールズ・ペンス・スリクター英語版によりリチウムにおいて理論の予想通りの現象が起こることが実験的に確認されていた[2]。また、1956年にはフッ化水素分子でいずれか一方の原子の核磁気共鳴の遷移を飽和させた場合に、もう一方の核の核磁気共鳴を観測するとその強度が変化することが確認され、核オーバーハウザー効果(NOE)の存在が知られるようになった。

NOEの理論的基礎は1962年にAndersonとFreemanによって述べられ、実験的に検証された[3]。1963年にはKaiserによって、電子スピンから核スピンへではなく、スピン偏極がある核スピン集団から別の集団に移されるNMR実験においてNOEが実験的に観察された[4]。しかし、NOEの理論的基礎と応用可能なソロモン方程式は1955年にイオネル・ソロモンフランス語版によって既に発表されていた[5]。その発見後すぐに、NOEは有機化合物の構造決定に応用された[6]

原理

磁気共鳴のシグナル強度は共鳴に関与する2つのエネルギー準位の占有数の差に比例する。オーバーハウザー効果による共鳴のシグナル強度の変化は、共鳴に関与する2つのエネルギー準位の占有数の差が熱平衡状態からずれることによって起こる。このずれは照射とそれに引き続いて起こる2つのスピンの相互作用による緩和によって発生する。

空間的に接近しているスピン角運動量1/2の2つの核A、Bからなるスピン系を考える。この系に静磁場をかけるとゼーマン効果によりエネルギー準位の分裂が起こる。磁気回転比が正の場合、スピンの磁気量子数が+1/2の核の方が-1/2の核よりもエネルギーが低くなるため占有数が増加して熱平衡状態に達する(磁気回転比が負ならば-1/2の準位がより安定になる)。

核Aと核Bの磁気量子数の符号によってゼーマン分裂によって生じた4つの準位をそれぞれ++、+-、-+、--と表すことにする。前の符号が核Aの磁気量子数の符号を、後の符号が核Bの磁気量子数の符号とする。それぞれの準位の占有率はボルツマン分布に従う。この熱平衡状態で核Bの共鳴の強さは、++と+-、-+と--の占有数差に対応するだけの強度となる。

ここで核Aのラーモア周波数と一致する周波数の電磁波を照射する。すると核Aの一部が++から-+、あるいは+-から--へと状態遷移を起こす。充分な照射を行なうと核Aの共鳴シグナルは飽和する。このとき、++と-+、+-と--の対ではそれぞれ占有数が一致している。しかし++と+-、-+と--の占有数差は照射前と変化しないため、核Bのシグナル強度はこの段階では熱平衡状態と変わらない。

核Aの照射により占有数が熱平衡状態からずれたため、緩和が起こる。緩和が核Aと核Bの間の双極子-双極子相互作用によって起こるとすると、そのハミルトニアンには2つの核のスピンを同時に反転させる項が含まれている。そのため緩和では電磁波による遷移と異なり複数のスピンが同時に反転するような遷移(交差緩和)も起こる。

緩和が核Aと核Bの間の双極子-双極子相互作用によって起こる場合、緩和による核Bの単位時間あたりの遷移確率Wは以下の式で表される。

-- ←→ ++(二量子遷移)

この項目は、化学に関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めていますプロジェクト:化学Portal:化学)。


核オーバーハウザー効果

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2019/11/03 17:45 UTC 版)

核磁気共鳴分光法」の記事における「核オーバーハウザー効果」の解説

詳細は「核オーバーハウザー効果」を参照 ある原子Aが吸収する周波数電磁波照射しつつ電磁波掃引して全体吸収測定を行うとする。このときすべての原子について、そのエネルギー自体変化しない。しかし、原子Aと空間的に近い位置にある原子では2つエネルギー状態占有率原子Aへの照射無かったときから変化する。そのため、普通に測定したNMRスペクトル照射用いて測定した一次元NMRスペクトル比較すると、ピーク面積積分値)が異なる。このように照射によりエネルギー準位占有率変化すること、またそれに付随するスペクトル変化を核オーバーハウザー効果 (nuclear overhauser effectNOE) という。NOE利用する原子Aと積分値変わったピーク相当する原子立体的に近い位置にある、ということ分かる

※この「核オーバーハウザー効果」の解説は、「核磁気共鳴分光法」の解説の一部です。
「核オーバーハウザー効果」を含む「核磁気共鳴分光法」の記事については、「核磁気共鳴分光法」の概要を参照ください。

ウィキペディア小見出し辞書の「核オーバーハウザー効果」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「核オーバーハウザー効果」の関連用語







7
36% |||||

8
32% |||||



核オーバーハウザー効果のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



核オーバーハウザー効果のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのオーバーハウザー効果 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの核磁気共鳴分光法 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS