情報幾何学とは? わかりやすく解説

情報幾何学

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/01/11 08:31 UTC 版)

情報幾何学(じょうほうきかがく、英: information geometry、仏: géométrie de l’information、独: Informationsgeometrie、略称: IG[1])とは、確率分布を要素とする統計モデルに関する微分幾何学的研究[2]のことであり、狭義には双対アフィン接続の微分幾何学[3]を指す。「数理統計学の微分幾何学化」[4]や「統計的推論の幾何学的方法論」[5]や「情報理論における微分幾何を用いた定式化」[6]と表現されるように、情報幾何学は統計学情報理論確率理論(大偏差理論)にまたがる[7]学際的な分野である。


  1. ^ Nielsen, Frank (2020). “An Elementary Introduction to Information Geometry”. Entropy 22 (10): 1100. doi:10.3390/e22101100. ISSN 1099-4300. PMC 7650632. PMID 33286868. https://www.mdpi.com/1099-4300/22/10/1100. 
  2. ^ “情報幾何学”. 岩波数学辞典. 日本数学会 (4th ed.). 岩波書店. (2007). pp. 543-546. ISBN 978-4-00-080309-0. OCLC 1086209906 
  3. ^ 藤原, 彰夫 (2015). 情報幾何学の基礎. 牧野書店. ISBN 978-4434208812. OCLC 922844329 
  4. ^ Goto, Shin-itiro; Hino, Hideitsu (2019). “Information and contact geometric description of expectation variables exactly derived from master equations”. Physica Scripta 95 (1): 015207. doi:10.1088/1402-4896/ab4295. ISSN 1402-4896. https://doi.org/10.1088/1402-4896/ab4295. 
  5. ^ 松添, 博「統計多様体とアファイン微分幾何学」『数理解析研究所講究録』第1916巻、2014年、1-17頁、NAID 120006223301 
  6. ^ 伊藤創祐「情報幾何の確率的熱力学による解釈と熱力学不確定性関係」『日本物理学会講演概要集』第73.2巻、日本物理学会、2018年、2183-2183頁、doi:10.11316/jpsgaiyo.73.2.0_2183NAID 130007735919 
  7. ^ 長岡, 浩司「情報幾何の基礎概念」(PDF)『情報幾何への入門と応用』2006年、1-36頁。 
  8. ^ 松添, 2014, p. 1
  9. ^ Kurose, Takashi (1994). “On the divergences of $1$-conformally flat statistical manifolds”. Tohoku Mathematical Journal 46 (3). doi:10.2748/tmj/1178225722. ISSN 0040-8735. https://projecteuclid.org/journals/tohoku-mathematical-journal/volume-46/issue-3/On-the-divergences-of-1-conformally-flat-statistical-manifolds/10.2748/tmj/1178225722.full. 
  10. ^ Nielsen, 2020, p. 12
  11. ^ 松添, 2014, p. 3
  12. ^ 日本数学会, 2007, p. 14
  13. ^ a b 黒瀬俊「定曲率ヘッセ多様体の分類 (部分多様体の微分幾何学およびその周辺領域の研究)」『数理解析研究所講究録』第1623巻、京都大学数理解析研究所、2009年1月、22-29頁、CRID 1050282677155302912hdl:2433/140260ISSN 1880-2818 
  14. ^ 黒瀬, 2009, p. 22
  15. ^ 松枝宏明、鈴木達夫「情報幾何におけるBTZブラックホール」『日本物理学会講演概要集』第73.1巻、日本物理学会、2018年、2702-2702頁、doi:10.11316/jpsgaiyo.73.1.0_2702NAID 130007647829 
  16. ^ 鈴木, 達夫 (2018). “BTZブラックホールのヘッセ構造”. 沼津改め静岡研究会 25. http://www.math.sci.hokudai.ac.jp/~ishikawa/Numazu-Shizuoka/suzukita-25.pdf. 
  17. ^ Hotelling, Harold (1930). “Spaces of statistical parameters”. Bulletin of the American Mathematical Society 36: 191. 
  18. ^ Stigler, Stephen M. (2007). “The Epic Story of Maximum Likelihood”. Statistical Science 22 (4). doi:10.1214/07-STS249. ISSN 0883-4237. https://projecteuclid.org/journals/statistical-science/volume-22/issue-4/The-Epic-Story-of-Maximum-Likelihood/10.1214/07-STS249.full. 
  19. ^ Nielsen, 2020, p. 26
  20. ^ 甘利, 俊一 (2020). “情報幾何: その歴史的発展と将来”. 数理科学 689: 5-6. 
  21. ^ C. R. Rao (1945). “Information and the accuracy attainable in the estimation of statistical parameters”. Bulletin of the Calcutta Mathematical Society 37: 81-91. 
  22. ^ Ченцов Н.Н. (1972). Статистические решающие правила и оптимальные выводы. Наука 
  23. ^ Chent︠s︡ov, N. N. (1982). Statistical decision rules and optimal inference. L. I︠A︡. Leĭfman. Providence, R.I.: American Mathematical Society. ISBN 0-8218-4502-0. OCLC 7837189. https://www.worldcat.org/oclc/7837189 
  24. ^ 藤原, 彰夫 (2016). “Chentsov の定理とその周辺 (I)”. ミニワークショップ:統計多様体の幾何学とその周辺 8. http://www.math.sci.hokudai.ac.jp/~furuhata/workshop/stat/16/Fujiwara160912.pdf. 
  25. ^ Efron, Bradley (1975). “Defining the Curvature of a Statistical Problem (with Applications to Second Order Efficiency)”. The Annals of Statistics 3 (6): 1189-1242. doi:10.1214/aos/1176343282. ISSN 0090-5364. https://projecteuclid.org/journals/annals-of-statistics/volume-3/issue-6/Defining-the-Curvature-of-a-Statistical-Problem-with-Applications-to/10.1214/aos/1176343282.full. 
  26. ^ Dawid, A. P. (1975). “Discussion of Efron”. Annals of Statistics 3: 1231-1234. 
  27. ^ 長岡, 2006, p. 8
  28. ^ Amari, Shun-Ichi (1982). “Differential Geometry of Curved Exponential Families-Curvatures and Information Loss”. The Annals of Statistics 10 (2). doi:10.1214/aos/1176345779. ISSN 0090-5364. https://projecteuclid.org/journals/annals-of-statistics/volume-10/issue-2/Differential-Geometry-of-Curved-Exponential-Families-Curvatures-and-Information-Loss/10.1214/aos/1176345779.full. 
  29. ^ 現代的にはチェンツォフの定理によって 接続を定義する(藤原, 2015, p. 122)。
  30. ^ 「偶然とはいえ、同じ頭文字 e で始まる命名となっていたことは興味深い」(藤原, 2015, p. 127)
  31. ^ 日本数学会, 2007, p. 544
  32. ^ 日本数学会, 2007, p. 543
  33. ^ 江口真透「さまざまな研究パラダイムをつなぐ情報幾何」『横幹連合コンファレンス予稿集』第2019巻第10回横幹連合コンファレンス、横断型基幹科学技術研究団体連合(横幹連合)、2019年、F-4-4、doi:10.11487/oukan.2019.0_F-4-4NAID 130007762476 
  34. ^ Nagaoka, Hiroshi; Amari, Shun-ichi (1982). “Differential Geometry of Smooth Families of Probability Distributions”. METR 82 (7). https://bsi-ni.brain.riken.jp/database/file/86/077.pdf. 
  35. ^ AMARI, Shun-ichi; KUMON, Masayuki「Geometrical Theory on Estimation of Structural Parameter in the Presence of Infinitely Many Nuisance Parameters」『数理解析研究所講究録』第507巻、京都大学数理解析研究所、1983年12月、97-116頁、CRID 1050282810620567552hdl:2433/103757ISSN 1880-2818 
  36. ^ 甘利, 2020, p. 5
  37. ^ 甘利俊一「応用数理の遊歩道(26) : 情報幾何の生い立ち」『応用数理』第11巻第3号、日本応用数理学会、2001年、253-256頁、doi:10.11540/bjsiam.11.3_253ISSN 09172270NAID 110007390917 
  38. ^ Eguchi, Shinto (1985). “A differential geometric approach to statistical inference on the basis of contrast functionals”. Hiroshima Mathematical Journal 15 (2). doi:10.32917/hmj/1206130775. ISSN 0018-2079. https://projecteuclid.org/journals/hiroshima-mathematical-journal/volume-15/issue-2/A-differential-geometric-approach-to-statistical-inference-on-the-basis/10.32917/hmj/1206130775.full. 
  39. ^ EM アルゴリズムの幾何学的解釈”. 有限混合分布モデルの学習に関する研究 (Web 版). 赤穂昭太郎. 2021年6月15日閲覧。
  40. ^ 村田, 昇; 池田, 思朗 (2004). 神経回路網と EM アルゴリズム. https://www.ism.ac.jp/~shiro/papers/books/embook2000.pdf. 
  41. ^ 甘利俊一「情報幾何とその応用 : Vボルツマン機械とEMアルゴリズム」『システム/制御/情報』第49巻第2号、システム制御情報学会、2005年、64-69頁、doi:10.11509/isciesci.49.2_64ISSN 0916-1600NAID 110003969659 
  42. ^ 長岡, 2015, pp. 141-154
  43. ^ 甘利俊一「情報幾何とその応用 : VIII神経多様体における学習と特異モデル」『システム/制御/情報』第49巻第8号、システム制御情報学会、2005年、337-343頁、doi:10.11509/isciesci.49.8_337ISSN 0916-1600NAID 110003983934 
  44. ^ 情報による観測量の変化速度の熱力学的な限界を発見 - 東京大学 大学院理学系研究科・理学部”. 2021年6月15日閲覧。
  45. ^ 伊藤, 創祐 (2020). “物理学と情報幾何学: ゆらぐ系の熱力学の視点から”. 数理科学 689: 38-45. http://sosuke110.com/surikagaku2020.pdf. 
  46. ^ 長岡浩司「量子情報幾何学の世界」『総合講演・企画特別講演アブストラクト』第2002巻Spring-Meeting、日本数学会、2002年、24-37頁、doi:10.11429/emath1996.2002.Spring-Meeting_24NAID 130005450749 
  47. ^ 渡辺優「量子情報幾何におけるHeisenberg の不確定性関係の位置付け (函数解析学による一般化エントロピーの新展開)」『数理解析研究所講究録』第1852号、京都大学数理解析研究所、2013年9月、210-216頁、ISSN 1880-2818NAID 110009625602 
  48. ^ 高津飛鳥「Wasserstein幾何学と情報幾何学 (特集 情報幾何学の探究 : 基礎と応用,現状と展望に迫る)」『数理科学』第58巻第11号、サイエンス社、2020年11月、67-73頁、ISSN 0386-2240NAID 40022377287JAN 4910054691108 


「情報幾何学」の続きの解説一覧

情報幾何学

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2017/09/12 04:16 UTC 版)

分配函数 (数学)」の記事における「情報幾何学」の解説

点 β {\displaystyle \beta } は空間形成する解釈され、特にこの空間多様体となる。この多様体どのような構造を持つかという疑問当然に起きる。これを情報幾何学(英語版)という。 ラグランジュ未定乗数に関する多重微分は、半正定値分散共分散行列引き起こすg i j ( β ) = ∂ 2 ∂ β i ∂ β j ( − log ⁡ Z ( β ) ) = ⟨ ( H i − ⟨ H i ⟩ ) ( H j − ⟨ H j ) ⟩ {\displaystyle g_{ij}(\beta )={\frac {\partial ^{2}}{\partial \beta ^{i}\partial \beta ^{j}}}\left(-\log Z(\beta )\right)=\langle \left(H_{i}-\langle H_{i}\rangle \right)\left(H_{j}-\langle H_{j}\right)\rangle } この行列半正定値行列で、計量テンソル解釈されリーマン計量と見なせる。このことにより、上記方法計量を持つラグランジュ未定乗数空間は、リーマン多様体となることが分かる。 この多様体研究は「情報幾何学」と呼ばれ上記計量フィッシャー情報計量英語版)と呼ばれる上記では β {\displaystyle \beta } は多様体上の座標である。上記の定義と、これに動機付けられた単純化されフィッシャー情報とを比較することは面白いことかもしれない上記フィッシャー情報計量定義することは、期待値明示的に代入することにより容易に理解することができる。 g i j ( β ) = ⟨ ( H i − ⟨ H i ⟩ ) ( H j − ⟨ H j ) ⟩ = ∑ x P ( x ) ( H i − ⟨ H i ⟩ ) ( H j − ⟨ H j ⟩ ) = ∑ x P ( x ) ( H i + ∂ log ⁡ Z ∂ β i ) ( H j + ∂ log ⁡ Z ∂ β j ) = ∑ x P ( x )log ⁡ P ( x ) ∂ β i ∂ log ⁡ P ( x ) ∂ β j {\displaystyle {\begin{aligned}g_{ij}(\beta )&=\langle \left(H_{i}-\langle H_{i}\rangle \right)\left(H_{j}-\langle H_{j}\right)\rangle \\&=\sum _{x}P(x)\left(H_{i}-\langle H_{i}\rangle \right)\left(H_{j}-\langle H_{j}\rangle \right)\\&=\sum _{x}P(x)\left(H_{i}+{\frac {\partial \log Z}{\partial \beta _{i}}}\right)\left(H_{j}+{\frac {\partial \log Z}{\partial \beta _{j}}}\right)\\&=\sum _{x}P(x){\frac {\partial \log P(x)}{\partial \beta ^{i}}}{\frac {\partial \log P(x)}{\partial \beta ^{j}}}\\\end{aligned}}} ここに、 P ( x 1 , x 2 , … ) {\displaystyle P(x_{1},x_{2},\dots )} を P ( x ) {\displaystyle P(x)} と記すことして、和は確率変数 X k {\displaystyle X_{k}} のすべてを渡るものとする。もちろん、連続した値をとる確率変数に対して、和は積分置き換わる奇妙なことに、フィッシャー情報計量ついての主要な記事記載されているように、適当に変数変換した後でフィッシャー情報計量英語版)は、平坦なユークリッド計量として理解するともできる。 β {\displaystyle \beta } が複素数であるときには結果として現れる計量フビニ・スタディ計量である。純粋状態に代って混合状態で書くときは、ビュレス計量英語版)として知られている。

※この「情報幾何学」の解説は、「分配函数 (数学)」の解説の一部です。
「情報幾何学」を含む「分配函数 (数学)」の記事については、「分配函数 (数学)」の概要を参照ください。

ウィキペディア小見出し辞書の「情報幾何学」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「情報幾何学」の関連用語

情報幾何学のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



情報幾何学のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの情報幾何学 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの分配函数 (数学) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2024 GRAS Group, Inc.RSS