半正定値とは? わかりやすく解説

定符号二次形式

(半正定値 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/07/01 09:12 UTC 版)

数学においてベクトル空間 V 上で定義された二次形式 Q定符号(ていふごう、: definite)であるとは、V の任意の非零ベクトルに対して Q が同じ符号をもつことを言う。定符号二次形式は、至る所正となるか、または至る所負となるかに従ってさらに、正の定符号positive definite; 正値正定値)または負の定符号negative definite; 負値負定値)に分けられる。

半定符号 (semidefinite) 二次形式も、至る所「正」および「負」としていたところを、至る所「負でない」および「正でない」に置き換えて、それぞれ半正定値positive semi-definite; 正半定値)と半負定値negative semi-definite; 負半定値)と定義される。正の値も負の値も取るような二次形式は不定符号 (indefinite; 不定値) であると言う。

より一般に、二次形式の定符号性を順序体上のベクトル空間において考えることもできる[1]

同伴対称双線型形式

ベクトル空間 V 上の二次形式の全体と、同じ空間上の対称双線型形式の全体との間には、一対一の対応が存在する。ゆえに対称双線型形式に対しても、対応する二次形式を考えることにより、定符号性や半定符号性などを考えることができる。二次形式 Q とそれに同伴する対称双線型形式 B との間には


半正定値

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2019/09/23 04:18 UTC 版)

行列の定値性」の記事における「半正定値」の解説

M が半正定値 (positive-semidefinite) または非負定値 (nonnegative-definite) であるとは、Cn の(実の場合Rn の)任意の零ベクトル z に対して z∗ Mz ≥ 0 が成り立つときに言う。

※この「半正定値」の解説は、「行列の定値性」の解説の一部です。
「半正定値」を含む「行列の定値性」の記事については、「行列の定値性」の概要を参照ください。

ウィキペディア小見出し辞書の「半正定値」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「半正定値」の関連用語

半正定値のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



半正定値のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの定符号二次形式 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの行列の定値性 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS