作用の種類
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/11/22 20:14 UTC 版)
群 G の X への作用が、 推移的あるいは可移 (transitive) であるとは、X が空でなく、X の任意の元 x に対して Gx = X が成り立つときに言う。ここで Gx = {gx | g ∈ G} は x の G による軌道である。鋭推移的 (sharply transitive) であるとは X の各元 y に対して、gx = y となるような g が一意であるときにいう。これは後述の正則性と同値。 n-重推移的 (n-transitive) であるとは、X が少なくとも n 個の元を持ち、どの二つも相異なる任意の x1, ..., xn とどの二つも相異なる y1, ..., yn に対して g ∈ G で gxk = yk (1 ≤ k ≤ n) が成り立つものが取れるときに言う。鋭 n-重推移的 (sharply n-transitive) であるとは、n-重推移的かつその定義における g がちょうど一つであるときにいう。 忠実 (faithful) あるいは効果的 (effective) であるとは、G の相異なるどのような二元 g, h に対しても x ∈ X を適当に選べば gx ≠ hx となるようにできるときにいう。これは g ≠ e なる G の各元に対して x ∈ X で gx ≠ x となるものが存在するといっても同じことである。これは直観的には、G の異なる元が X の異なる置換を引き起こすということを言っている。 自由 (free) あるいは半正則 (semiregular) であるとは、X の任意の元 x に対して「 gx = hx となるのは g = h であるときに限る」が成立することをいう。これは X の任意の元 x に対して「 gx = x ならば g は単位元である」が成り立つと言い換えてもよい。 正則 (regular) あるいは単純推移的 (simply transitive) であるとは、自由かつ推移的であるときにいう。すなわち、X の任意の二元 x, y に対し、g ∈ G がちょうど一つ存在して gx = y とできるということである。このとき、X は G の主等質空間(英語版)あるいは G-トーサーと呼ばれる。 局所自由 (locally free) であるとは、G が位相群で、G の単位元 e の適当な近傍 U が存在して、作用の U への制限が自由、すなわち X の適当な元 x と U の適当な元 g に対して gx = x となるならば g = e であることをいう。 既約 (irreducible) であるとは、X がある環 R 上の自明でない加群で、G の作用が R-線型であって、X は自明でない真の G-不変部分加群をもたないときにいう。 空でない集合上の任意の自由作用は忠実である。群 G の X への作用が忠実であるための必要十分条件は、群準同型 G → Sym(X) の核が自明であることである。従って、G の X への忠実な作用があれば、G は X 上の置換群のある部分群(G の Sym(X) における像)に同型である。 任意の群 G の左からの乗法による自身への作用は正則であり、したがって忠実でもある。従って、任意の群 G はそれ自身の元上の対称群 Sym(G) に埋め込める(これはケイリーの定理(英語版)として知られる)。 群 G が X に忠実に作用しない場合も、群を少し変更して忠実作用を得ることができる。N = {g ∈ G | gx = x (∀x ∈ X)} と置けば、N は G の正規部分群である(実際、これは群準同型 G → Sym(X) の核になっている)。剰余群 G/N は (gN) • x := gx と置くことにより X に忠実に作用する。X への G のもともとの作用が忠実であることと N = {e} であることとは同値である。
※この「作用の種類」の解説は、「群作用」の解説の一部です。
「作用の種類」を含む「群作用」の記事については、「群作用」の概要を参照ください。
- 作用の種類のページへのリンク