ローレンツサイクル
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/05/10 06:33 UTC 版)
「蒸気圧縮冷凍サイクル」の記事における「ローレンツサイクル」の解説
冷凍機に冷媒番号400番台の非共沸混合冷媒を使用する場合、等圧での蒸発・凝縮の間に冷媒温度が上昇または下降する。このように蒸発・凝縮時に温度変化(「温度すべり」)を伴う冷凍サイクルをローレンツサイクルという。用途によっては、この特性をうまく利用すれば、「温度一定の逆カルノーサイクル以上の成績係数を達成できる」として注目されている。 図10に R32/R125/R134a の三元混合物である R407 系冷媒の標準大気圧での気液平衡図を示す。図の左端は R32/R125 の質量比 50:50 の非共沸混合物の R410A で、右端は単一成分の R134a であり、図は R410A と R134a の混合物の気液平衡図となっている。R410A の標準大気圧での気液平衡温度は -51.37 から -51.46 ℃ であり、非共沸混合物であるが、温度すべりは極めて小さい。図のR134a を70 % 含む混合冷媒は R407D (R32/125/134a = 15/15/70 wt) であり、R134a を 52 % 含む混合冷媒はほぼ R407C (R32/125/134a = 23/25/52 wt) に相当する。R410A の大気圧での温度すべりが 0.09 ℃ であるのに対して、R407C および R407D のそれは、6.98 および 6.59 ℃ と、かなり大きな値となるのが特徴である。 大きな温度すべりを伴う R407C を冷媒とした単純冷凍サイクルの P-h線図、T-s 線図を図11、12に示す。凝縮圧力は 1.6 MPa、蒸発圧力は 0.6 MPaである。P-h 線図の形には何の変化も現れないが、T-s 線図では蒸発器での吸熱時に温度が徐々に上昇し、凝縮器での放熱時に温度が徐々に低下する。この温度すべりは、従来はデメリットと考えられていたが、これをうまく活用することができる。 図11.ローレンツサイクルの P-h 線図 図12.ローレンツサイクルの T-s 線図 このローレンツサイクルを用いて、冷水(Chilled Water)から熱を取り、温水(Hot Water)を加熱するヒートポンプを考える。冷水および温水自身も熱交換に伴って温度が変化するので、蒸発器と凝縮器のそれぞれに向流形の熱交換器を用いて流量等の条件を適当に選べば、ほぼ一定の温度差で効率よく熱交換することが可能となる(図12の赤い破線)。このサイクルを用いた製品も市販されている。
※この「ローレンツサイクル」の解説は、「蒸気圧縮冷凍サイクル」の解説の一部です。
「ローレンツサイクル」を含む「蒸気圧縮冷凍サイクル」の記事については、「蒸気圧縮冷凍サイクル」の概要を参照ください。
- ローレンツサイクルのページへのリンク