レーザー原子法
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/10 07:43 UTC 版)
ウラン235とウラン238のわずかな吸収スペクトルの違いを利用した同位体分離法である。ウラン235を選択的に励起し電離させた後、正電荷となったウランを陰電極に回収する。ウランを電離するのに必要なエネルギーは6.18eVであるが、ウラン235とウラン238の吸収スペクトルの差が極めて小さいため、ウラン235のみを電離するには詳細な選択励起を行わなければならない。詳細な選択励起が可能な吸収線はエネルギー値が小さく、電離に要する十分なエネルギーを与えることが出来ないため、詳細な選択励起が可能な光線から、エネルギー値の高い光線までを3段階に分けて照射し、徐々にウラン235を励起していく方法がとられる。まず、詳細な選択励起が可能な0.5μmの可視光線を用いて初期励起を行い、続いてわずかにエネルギー値の高い選択線を用いて中間励起を行う。最終励起には、6.18eVを上回り、未励起のウラン238を電離することのない光線を照射し、ウラン235のみを電離させる。以上の記述は3段階3波長方式に関するものだが、中間励起を省略した2段階2波長方式もある。日本においては、1976年より日本原子力研究所(現・日本原子力研究開発機構)が基礎研究を行い、電気事業連合会加盟の電力会社を中心として、1987年に設立された「レーザー濃縮技術研究組合」において実証研究が進められた。参画したメーカーは、株式会社日立製作所、三菱重工業株式会社、株式会社東芝、三菱電機株式会社である。米国においては、ローレンス・リバモア国立研究所が開発を行い、その技術はアメリカ合衆国燃料公社(USEC)に移管されたが、同社は経済性から同技術を採用せず、オーストラリアのSilex Systems社が開発した技術を採用した。 回収方法には、固体法と液体法があるが、装置内のウランガス温度は2,800Kほどあるため、耐久性の高い構造材を用いなければならない。
※この「レーザー原子法」の解説は、「ウラン濃縮」の解説の一部です。
「レーザー原子法」を含む「ウラン濃縮」の記事については、「ウラン濃縮」の概要を参照ください。
- レーザー原子法のページへのリンク