リーマン積分の例
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/03/25 07:14 UTC 版)
f: [0, 1] → ℝ を至る所 1 である函数とする。[0, 1] 上の f の任意のリーマン和の値は 1 になるから、[0, 1] 上の f のリーマン積分の値も 1 である。 ディリクレの函数 Iℚ: [0, 1] → ℝ は区間 [0, 1] に含まれる有理数全体の成す集合の指示函数、つまり有理数の上で 1, 無理数の上で 0 となるような函数である。この函数はリーマン積分を持たない。これを示すには、リーマン和が 0 および 1 にそれぞれいくらでも近づけることができるような点付き分割を構成すればよい。 点付き分割 (x0, …, xn; t0, …, tn−1) からはじめて、ε > 0 を選ぶ。ti は既に確定しているから、そこでの f の値を変更することはできないが、ti の周りをごく小さい小区間に分ければ ti の寄与は十分小さくすることができるから、新しい識別点を注意深く選べば、リーマン和の値を 0 あるいは 1 の好きなほうとの差を ε より小さくできることを示す。 最初の段階は分割の細分である。ti は n 個あり、それらの寄与の総計を ε より小さくしたい。そこでそれらの点を長さが ε/n より小さい小区間に入るようにすれば、各 ti のリーマン和への寄与は 0 から ε/n の間に収まるから、それらの総計は 0 から ε の間に収まることになる。δ を ε/n より小さな正の数とし、ti たちの二つが互いに δ よりも近くにあるならば、δ をさらに小さく取り直し、また ti と δ 以内に xj があってそれらが異なる場合も δ を小さく取り直す。基準点(ti と xj)の数は有限個だから、有限回の取り直しで δ は十分小さく取れているはずである。 ここで、各 ti に対してさらに二つ、ti − δ/2 および ti + δ/2 を識別点に加える(片方が区間 [0, 1] を外れるならばその点は考えない)と、ti は小区間 [ti − δ/2, ti + δ/2] に対応する識別点になる。ti が直接 xj のどれかの上にあるならば、ti は二つの小区間 [ti − δ/2, xj] と [xj, ti + δ/2] の双方に対応する識別点とする。さらに、これら以外の小区間の識別点を選ばなければならないが、その選び方はいま二種類を挙げることができる。一つは全ての識別点を有理数にとる方法で、これによってリーマン和は可能な限り大きくとれて、1 − εよりも大にすることができる。もう一つは、識別点を全て無理数にとる方法で、これによりリーマンはは可能な限り小さくできて、ε で抑えられる。 任意の分割から始めて、最終的にリーマン和を 0 にも 1 にも望むだけ近くすることができたから、リーマン和が特定の数 s に収束するという主張は偽となり、この函数 f はリーマン可積分でないことが示された。実はこの函数はルベーグ可積分であり、函数が殆ど至る所 0 であるから、ルベーグの意味での積分値は 0 であるけれども、しかしこのことはリーマン積分に影響を及ぼすものではない。 さらに困った例が存在する。Iℚ は(殆ど至る所等しいという意味で)同値なリーマン可積分函数が存在したけれども、どのリーマン可積分函数とも同値でないようなリーマン積分不能な有界函数というものが存在する。例えば、C をスミス–ヴォルテラ–カントール集合(英語版)とし、その指示函数を IC とする。C はジョルダン可測ではないから IC はリーマン可積分ではない。さらに IC に同値なリーマン可積分函数 g は存在しない。実際、g は IC と同様に稠密集合上 0 でなければならないから、前の例と同様に g の任意のリーマン和は任意の正数 ε に対して 0 との差が ε 以内に収まるような細分を持つ。しかし、g のリーマン積分が存在するならば、それは IC のルベーグ積分である 1/2 に等しくないといけないから、g はリーマン可積分でない。
※この「リーマン積分の例」の解説は、「リーマン積分」の解説の一部です。
「リーマン積分の例」を含む「リーマン積分」の記事については、「リーマン積分」の概要を参照ください。
- リーマン積分の例のページへのリンク