点付き分割とは? わかりやすく解説

区間の分割

(点付き分割 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2016/03/22 12:10 UTC 版)

Jump to navigation Jump to search
区間の分割はリーマン和に用いられる。分割それ自体は図の下部にグレーで(小区間の一つを赤で)示してある。

数学において実数直線上の区間 [a, b]分割(ぶんかつ、: partition)とは、実数からなる

a = x0 < x1 < x2 < … < xn = b

の形の有限点列 Π = (xi) を言う。即ち、有界閉区間 I の分割は、(区間 I に属する実数からなる)狭義単調増加列であって、I の小さいほうの端点から大きいほうの端点へ到達する。

このとき、各点 xi を区間 [a, b] の分割 Π に属する分点と言い、[xi, xi+1] の形の各区間を分割 Π に属する小区間 (sub-interval) などと呼ぶ。

区間の分割 Π = (xi) に対し、例えば

は明らかに区間 [a, b]集合としての分割を与える。

分割の細分

与えられた区間の分割 P に対して、同じ区間の別の分割 QP細分 (refinement) であるとは(他に点が加わっていてもよいから)P の分点をすべて含むときに言う。このとき分割 QP より細かい (finer) と言う。また、細かい分割のほうが大きいと定義することにより、与えられた区間上の分割全体の成す集合上に半順序を入れることができる。すなわち、分割 P, Q に対し、その分点からなる集合をそれぞれ P', Q' とすれば、

である。二つの分割 P, Q に対して、その共通細分 (common refinement) P ∨ Q を、P, Q の全ての分点をその大きさの順で並べ直して得られる点列として与えることができる[1]

分割の大きさ

分割

x0 < x1 < x2 < ... < xn

大きさ (norm) あるいは目 (mesh) とは、それに属する最長の小区間の長さ

max{xixi−1 | i = 1, …, n}

を言う[2][3]

応用

区間の分割はリーマン積分リーマン–スティルチェス積分方正積分などの理論に利用される。具体的には、与えられた区間に対して(より小さな分割に取り直すという意味において)分割の大きさを 0 に近づけるにつれ、その区間上で定義されたリーマン和リーマン積分に近づく[4]

点付き分割

与えられた区間の点付き分割 (tagged partition[5]) とは、その区間の分割 Π = (xi) と各 i (0 ≤ i < n) について

xitixi+1

なる条件を満足する有限点列 t0, …, tn−1 との組を言う。即ち、点付き分割は、各小区間の識別点 (distinguished point, tag) が指定されているような分割である。点付き分割の大きさ(目)は通常の分割に対するものと同じに定義される。通常の分割の場合と同様に、点付き分割の細分を考えることにより与えられた区間上の点付き分割全体の成す集合上に半順序を入れることができる。

ここで、区間 [a, b] の点付き分割 (xi; ti) および (yj; sj) に対し、(yj; sj)点付き分割 (xi; ti) の細分であるとは、各 i に対して整数 r(i) が存在して、xi = yr(i) かつ r(i) ≤ j < r(i + 1) なる適当な整数 j に対して ti = sj となるときに言う。一口に言えば、点付き分割の細分は、もとの分割に分点と識別点を追加して(点を取り去ることはせずに)得られる点付き分割である。

関連項目

参考文献

関連文献

  • Gordon, Russell A. (1994). The integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics, 4. Providence, RI: American Mathematical Society. ISBN 0-8218-3805-9. 

点付き分割

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2016/03/22 12:10 UTC 版)

区間の分割」の記事における「点付き分割」の解説

与えられ区間の点付き分割 (tagged partition) とは、その区間の分割 Π = (xi) と各 i (0 ≤ i < n) について xitixi+1 なる条件満足する有限点列 t0, …, tn−1 との組を言う。即ち、点付き分割は、各小区間の識別点 (distinguished point, tag) が指定されているような分割である。点付き分割の大きさ(目)は通常の分割対するものと同じに定義される通常の分割場合同様に、点付き分割の細分考えることにより与えられ区間上の点付き分割全体の成す集合上に半順序入れることができる。 ここで、区間 [a, b] の点付き分割 (xi; ti) および (yj; sj) に対し、(yj; sj) が点付き分割 (xi; ti) の細分であるとは、各 i に対して整数 r(i) が存在してxi = yr(i) かつ r(i) ≤ j < r(i + 1) なる適当な整数 j に対して ti = sj となるときに言う。一口に言えば、点付き分割の細分は、もとの分割分点識別点を追加して(点を取り去ることはせずに)得られる点付き分割である。

※この「点付き分割」の解説は、「区間の分割」の解説の一部です。
「点付き分割」を含む「区間の分割」の記事については、「区間の分割」の概要を参照ください。

ウィキペディア小見出し辞書の「点付き分割」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「点付き分割」の関連用語

点付き分割のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



点付き分割のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの区間の分割 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの区間の分割 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS