ヘイルズの証明
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/03/31 01:46 UTC 版)
ミシガン大学に在籍していたトマス・ヘイルズは、ラースロー・フェイェシュ=トートが提案したアプローチにならい、150個の変数を持つある関数を最小化することによって最大密度配置を見出せると考えた。1992年、大学院生のサミュエル・ファーガソンを助手としたヘイルズは、系統的な線型計画法により、すべての異なる配置の集合に含まれる5000種以上の配置一つ一つについて関数値の下界を求める計画に着手した。すべての配置で関数の下界が立方最密配置の関数値を超えるならば、それがケプラー予想の証明になる。可能なすべてのケースについて下界を求めるには、10万個ほどの線形計画問題を解く必要があった。 1996年に研究プロジェクトを公表するに際して、終結は目前ながら完了まで「1・2年」かかるかもしれない、とヘイルズは述べた。1998年の8月にヘイルズは証明の完了を発表した。この時点で証明は250ページの手稿と3ギガバイトのプログラム、データ、計算結果から構成されていた。 証明の形式が異例だったにもかかわらず、Annals of Mathematics誌の編集者は掲載に同意したが、12人の専門家による査読を条件とした。2003年、四年間の作業を経て、査読者団の筆頭であったガボル・フェイェシュ=トートは証明が正しいことに「99%の確信を持っている」と報告した。しかし、コンピュータによる計算がすべて正しいと保証することはできなかった。 2005年、ヘイルズは100ページの論文で、証明の中でコンピュータを用いない部分を詳述した。ファーガソンとの共著による2006年の論文および数篇の続報ではコンピュータによる部分を報告した。2009年にヘイルズとファーガソンは離散数学の分野の優れた論文に対して贈られるファルカーソン賞を受賞した。
※この「ヘイルズの証明」の解説は、「ケプラー予想」の解説の一部です。
「ヘイルズの証明」を含む「ケプラー予想」の記事については、「ケプラー予想」の概要を参照ください。
- ヘイルズの証明のページへのリンク