熱水噴出孔 熱水噴出孔の海中探査

熱水噴出孔

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/05/24 02:19 UTC 版)

熱水噴出孔の海中探査

堆積記録に見られる典型的な火山性塊状硫化物(VMS)鉱床の断面図[51]

1949年紅海中部の海底を調査したところ、特異的な熱水床の存在が報告された。1960年代には、60 °Cの塩類を含む水と、これに関係して金属を含むが存在することが確認され、そしてこの熱い水溶液は海底下のリフトから活発に噴出していることが判明した。塩分濃度が高すぎて生物の生息は無理な環境であった[52]。この塩水と泥が貴金属卑金属の供給源でありうるか、現在調査中である。

最初に発見された熱水噴出孔は、東太平洋海嶺の支脈にあたるガラパゴスリフトのある海域で、Pleiades II遠征において ディープ・トウ海底イメージングシステム を用いて海水温を調査中であったスクリップス海洋研究所の海洋地質学者のグループが1976年に発見したブラックスモーカーである[53]。計測温度とその他の証拠から、熱水噴出孔からの噴出水であると結論付けられ、1977年にPeter Lonsdaleは熱水噴出孔に関する初の論文を発表した[54]。Peter Lonsdaleがディープ・トウのカメラから撮った写真を公開し[55]、博士課程の学生のキャスリーンクレーン英語版が地図と温度異常データを公開した[56]。サイトには「クラムベイク(Clam-bake)」というニックネームが付けられ、トランスポンダが設置された。翌年、ウッズホール海洋研究所の潜水艇ALVIN号を使って再びサイトに赴き、数々の熱水噴出孔を目視確認した。

ガラパゴスリフトの海底熱水噴出孔を取り巻く化学合成生態系は、アメリカ国立科学財団から資金提供を受けた海洋地質学者のグループがクラムベイクのサイトに戻った1977年に、初めて直接観察された。潜水調査の主任研究者はオレゴン州立大学の ジャック・コーリスであった。スタンフォード大学のCorlissとTjeerd van Andelは、1977年2月17日にウッズホール海洋研究所 (WHOI)が運営する潜水船DSV ALVINでダイビングしながら、ベントとその生態系を観察し、サンプリングした[57]。調査クルーズの他の科学者には、WHOIの Richard (Dick) Von Herzenと Robert Ballard、オレゴン州立大学のJack Dymondと Louis Gordon、マサチューセッツ工科大学の John EdmondとTanya Atwater、米国地質調査所のDave Williams、スクリプス海洋研究所のKathleen Craneがいた[57][58]。このチームはScience誌に、ベント、生物、ベント熱水の組成に関する観察結果を発表した[59]。1979年、当時WHOIにいたJ. Frederick Grassleが率いる生物学者のチームが同じ場所に戻り、2年前に発見された生物群集を調査した。

高温の熱水噴出孔であるブラックスモーカーは、1979年春に潜水艇ALVIN号を使用して、スクリップス海洋研究所のチームによって発見された。RISE探検隊は、ALVIN号を使用して海底の地球物理学的マッピングをテストし、ガラパゴスリフトベントのさらに先で別の熱水フィールドを見つけることを目的として、21°Nの東太平洋海膨を探索した。遠征はFred Spiessと Ken Macdonaldが主導し、米国メキシコフランスからの参加者が含まれていた[60]。ダイビング海域は、1978年のフランスのCYAMEX遠征による硫化鉱物の海底マウンドの発見に基づいて選択された[61]。潜水作業の前に、遠征隊員のRobert Ballardは、深く牽引された計器パッケージを使用して、海底近くの水温異常を見つけた。最初のダイビングは、これらの異常の1つを対象としたものであった。イースターの日曜日の1979年4月15日、ALVIN号から2600メートルへのダイビング中に、Roger Larsonと Bruce Luyendyk は、ガラパゴスベントに似た生物群集の熱水ベントフィールドを発見した。4月21日のその後のダイビングで、William NormarkとThierry Juteauは、煙突から黒い鉱物粒子ジェットを放出する高温のブラックスモーカーのベントを発見した(WHOIウェブサイト)。この後、温度プローブをALVIN号にリギングして、ブラックチムニーの熱水の水温を測定し、深海の熱水噴出孔で記録された最高温度(380±30 °C)を記録した[62]。さらに、ブラックスモーカーとそれらに供給されたチムニーの分析から、熱水とチムニー構成物の一般的な鉱物は硫化鉄沈殿物であることを明らかにした[63]

2005年にはNeptune Resources NLという鉱物資源調査会社が、ニュージーランド排他的経済水域におけるケルマディック島弧で3万5,000km2の海域の調査を許可され、熱水噴出孔により形成された亜鉛硫化物の新しい鉱床たりうる海底硫黄鉱床を探査した。2007年4月には中米コスタリカ沖合の太平洋における新しい熱水噴出孔海域であるMedusa熱水フィールド(ギリシア神話の蛇の髪を持つ怪物であるメドゥーサにちなんで命名された)が発見された[64]

Ashadze熱水フィールド(大西洋中央海嶺の北緯13度、深度4200 m)は、それまで最も深い場所にある熱水フィールドであった[65]2010年4月6日、イギリス国立海洋学センター、NASAジェット推進研究所、およびウッズホール海洋研究所のの研究チームが、カリブ海ケイマン諸島沖合のケイマン海溝で、世界で最も深い場所に位置する熱水噴出孔を発見した[66][67][68]。それまで確認されていた通常の熱水噴出孔の約2倍、最も深いとされたブラックスモーカーよりもさらに800m深い水深5,000mの海底にある[66]。海洋探検家ウィリアム・ビービにちなんでBeebe熱水サイト(北緯18度33分 西経81度43分 / 北緯18.550度 西経81.717度 / 18.550; -81.717、深度5000 m)と名付けられたこの熱水噴出孔は、鉄と銅の鉱石で形成されたチムニーを持つブラックスモーカーのひとつである[66][67][69]。水温は摂氏400度と推定され、周辺では目を持たず代わりに背中に光受容体を持つ新種のエビ類や白い触手を持つ新種のイソギンチャク類など発見が相次いでいる[69]。2010年にサイトにおいて、グループによって熱水プルームの信号が検出された。さらに2013年の初めには、カリブ海の深度約5000 mの場所から熱水噴出孔が発見された[70]

構造プレートが互いに離れているフアンデフカ中部海嶺の火山と熱水噴出孔が研究されている[71]。また、メキシコのバハカリフォルニアスル州のコンセプシオン湾(Bahía de Concepción)においても、熱水噴出孔やその他の地熱現象が調査されている[72]


  1. ^ a b c d e f g Colín-García, María (2016). “Hydrothermal vents and prebiotic chemistry: a review”. Boletín de la Sociedad Geológica Mexicana 68 (3): 599-620. doi:10.18268/BSGM2016v68n3a13. 
  2. ^ Chang, Kenneth (2017年4月13日). “Conditions for Life Detected on Saturn Moon Enceladus”. New York Times. https://www.nytimes.com/2017/04/13/science/saturn-cassini-moon-enceladus.html 2017年4月14日閲覧。 
  3. ^ “Spacecraft Data Suggest Saturn Moon's Ocean May Harbor Hydrothermal Activity”. NASA. (2015年3月11日). http://www.nasa.gov/press/2015/march/spacecraft-data-suggest-saturn-moons-ocean-may-harbor-hydrothermal-activity/index.html 2015年3月12日閲覧。 
  4. ^ http://www.space.com/missionlaunches/missions/mars_society_conference_010515-1.html
  5. ^ Weinstein, Stuart A., Olson, Peter L. (1989). “The proximity of hotspots to convergent and divergent plate boundaries”. Geophysical Research Letters 16: 433-436. https://ui.adsabs.harvard.edu/abs/1989GeoRL..16..433W/abstract. 
  6. ^ Garcia, Elena Guijarro; Ragnarsson, Stefán Akí; Steingrimsson, Sigmar Arnar; Nævestad, Dag; Haraldsson, Haukur; Fosså, Jan Helge; Tendal, Ole Secher; Eiríksson, Hrafnkell (2007). Bottom trawling and scallop dredging in the Arctic: Impacts of fishing on non-target species, vulnerable habitats and cultural heritage. Nordic Council of Ministers. p. 278. ISBN 978-92-893-1332-2 
  7. ^ Haase, K. M. (2007). “Young volcanism and related hydrothermal activity at 5°S on the slow-spreading southern Mid-Atlantic Ridge”. Geochemistry Geophysics Geosystems 8 (11): Q11002. Bibcode2007GGG.....811002H. doi:10.1029/2006GC001509. 
  8. ^ Haase, K. M. (2009). “Fluid compositions and mineralogy of precipitates from Mid Atlantic Ridge hydrothermal vents at 4°48'S”. Pangaea. doi:10.1594/PANGAEA.727454. 
  9. ^ Bischoff, James L; Rosenbauer, Robert J (1988). “Liquid-vapor relations in the critical region of the system NaCl-H2O from 380 to 415°C: A refined determination of the critical point and two-phase boundary of seawater”. Geochimica et Cosmochimica Acta 52 (8): 2121-2126. Bibcode1988GeCoA..52.2121B. doi:10.1016/0016-7037(88)90192-5. https://zenodo.org/record/1253886. 
  10. ^ A. Koschinsky, C. Devey (2006年5月22日). “Deep-Sea Heat Record: Scientists Observe Highest Temperature Ever Registered at the Sea Floor” (English). International University Bremen. 2006年7月6日閲覧。
  11. ^ Von Damm, K L (1990). “Seafloor Hydrothermal Activity: Black Smoker Chemistry and Chimneys”. Annual Review of Earth and Planetary Sciences 18 (1): 173-204. Bibcode1990AREPS..18..173V. doi:10.1146/annurev.ea.18.050190.001133. https://zenodo.org/record/1234953. 
  12. ^ Haase, K. M. (2007). “Young volcanism and related hydrothermal activity at 5°S on the slow-spreading southern Mid-Atlantic Ridge”. Geochemistry Geophysics Geosystems 8 (11): Q11002. Bibcode2007GGG.....811002H. doi:10.1029/2006GC001509. 
  13. ^ Haase, K. M. (2009). “Fluid compositions and mineralogy of precipitates from Mid Atlantic Ridge hydrothermal vents at 4°48'S”. Pangaea. doi:10.1594/PANGAEA.727454. 
  14. ^ Tivey, Margaret K. (1998年12月1日). “How to Build a Black Smoker Chimney: The Formation of Mineral Deposits At Mid-Ocean Ridges” (English). Woods Hole Oceanographic Institution.. 2006年7月7日閲覧。
  15. ^ Sid Perkins (2001). “New type of hydrothermal vent looms large”. Science News 160 (2): 21. http://www.sciencenews.org/articles/20010714/fob3.asp. 
  16. ^ Petkewich, Rachel (September 2008). “Tracking ocean iron”. Chemical & Engineering News 86 (35): 62-63. doi:10.1021/cen-v086n035.p062. 
  17. ^ Douville, E; Charlou, J.L; Oelkers, E.H; Bienvenu, P; Jove Colon, C.F; Donval, J.P; Fouquet, Y; Prieur, D et al. (March 2002). “The rainbow vent fluids (36°14′N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids”. Chemical Geology 184 (1-2): 37-48. Bibcode2002ChGeo.184...37D. doi:10.1016/S0009-2541(01)00351-5. 
  18. ^ Spiess, F. N.; Macdonald, K. C.; Atwater, T.; Ballard, R.; Carranza, A.; Cordoba, D.; Cox, C.; Garcia, V. M. D. et al. (28 March 1980). “East Pacific Rise: Hot Springs and Geophysical Experiments”. Science 207 (4438): 1421-1433. Bibcode1980Sci...207.1421S. doi:10.1126/science.207.4438.1421. PMID 17779602. 
  19. ^ Boiling Hot Water Found in Frigid Arctic Sea”. LiveScience (2008年7月24日). 2008年7月25日閲覧。
  20. ^ Scientists Break Record By Finding Northernmost Hydrothermal Vent Field”. Science Daily (2008年7月24日). 2008年7月25日閲覧。
  21. ^ Cross (2010年4月12日). “World's deepest undersea vents discovered in Caribbean”. BBC News. 2010年4月13日閲覧。
  22. ^ 0123”. www.jamstec.go.jp. 2020年8月29日閲覧。
  23. ^ Beatty, J.T. (2005). “An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent”. Proceedings of the National Academy of Sciences 102 (26): 9306-10. Bibcode2005PNAS..102.9306B. doi:10.1073/pnas.0503674102. PMC 1166624. PMID 15967984. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1166624/. 
  24. ^ CSOTONYI Julius T. ; STACKEBRANDT Erko ; YURKOV Vladimir (2006), “Anaerobic respiration on tellurate and other metalloids in bacteria from hydrothermal vent fields in the eastern pacific ocean”, Applied and Environmental Microbiology英語版 (American Society for Microbiology) 72 (7): 4950-4956, ISSN 0099-2240, オリジナルの2007年12月17日時点におけるアーカイブ。, https://web.archive.org/web/20071217122406/http://cat.inist.fr/?aModele=afficheN&cpsidt=17933915 2007年7月26日閲覧。 
  25. ^ Astrobiology Magazine: Extremes of Eel City Retrieved 30 August 2007
  26. ^ Sysoev, A. V.; Kantor, Yu. I. (1995). “Two new species of Phymorhynchus (Gastropoda, Conoidea, Conidae) from the hydrothermal vents”. Ruthenica 5: 17-26. http://www.ruthenica.com/documents/Vol5_Sysoev_Kantor_17-26_abstract.pdf. 
  27. ^ Botos, Sonia. “Life on a hydrothermal vent”. 2008年5月14日閲覧。
  28. ^ Van Dover. “Hot Topics: Biogeography of deep-sea hydrothermal vent faunas”. Woods Hole Oceanographic Institution. 2020年9月17日閲覧。
  29. ^ Van Dover 2000[要文献特定詳細情報]
  30. ^ Lonsdale, Peter (1977). “Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers”. Deep Sea Research 24 (9): 857-863. Bibcode1977DSR....24..857L. doi:10.1016/0146-6291(77)90478-7. 
  31. ^ Cavanaug eta al 1981[要文献特定詳細情報]
  32. ^ Felback 1981[要文献特定詳細情報]
  33. ^ Rau 1981[要文献特定詳細情報]
  34. ^ Cavanaugh 1983[要文献特定詳細情報]
  35. ^ Fiala-Médioni, A. (1984). “Ultrastructural evidence of abundance of intracellular symbiotic bacteria in the gill of bivalve molluscs of deep hydrothermal vents”. Comptes rendus de l'Académie des Sciences 298 (17): 487-492. 
  36. ^ Le Pennec, M.; Hily, A. (1984). “Anatomie, structure et ultrastructure de la branchie d'un Mytilidae des sites hydrothermaux du Pacifique oriental” (French). Oceanologica Acta 7 (4): 517-523. 
  37. ^ Flores, J. F.; Fisher, C. R.; Carney, S. L.; Green, B. N.; Freytag, J. K.; Schaeffer, S. W.; Royer, W. E. (2005). “Sulfide binding is mediated by zinc ions discovered in the crystal structure of a hydrothermal vent tubeworm hemoglobin”. Proceedings of the National Academy of Sciences 102 (8): 2713-2718. Bibcode2005PNAS..102.2713F. doi:10.1073/pnas.0407455102. PMC 549462. PMID 15710902. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC549462/. 
  38. ^ Thiel, Vera; Hügler, Michael; Blümel, Martina; Baumann, Heike I.; Gärtner, Andrea; Schmaljohann, Rolf; Strauss, Harald; Garbe-Schönberg, Dieter et al. (2012). “Widespread Occurrence of Two Carbon Fixation Pathways in Tubeworm Endosymbionts: Lessons from Hydrothermal Vent Associated Tubeworms from the Mediterranean Sea”. Frontiers in Microbiology 3: 423. doi:10.3389/fmicb.2012.00423. PMC 3522073. PMID 23248622. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522073/. 
  39. ^ Stein et al 1988[要文献特定詳細情報]
  40. ^ Biology of the Deep Sea, Peter Herring[要文献特定詳細情報]
  41. ^ Van Dover et al 1988[要文献特定詳細情報]
  42. ^ Desbruyeres et al 1985[要文献特定詳細情報]
  43. ^ de Burgh, M. E.; Singla, C. L. (December 1984). “Bacterial colonization and endocytosis on the gill of a new limpet species from a hydrothermal vent”. Marine Biology 84 (1): 1-6. doi:10.1007/BF00394520. 
  44. ^ Ikuta, Tetsuro; Takaki, Yoshihiro; Nagai, Yukiko; Shimamura, Shigeru; Tsuda, Miwako; Kawagucci, Shinsuke; Aoki, Yui; Inoue, Koji et al. (2016-04). “Heterogeneous composition of key metabolic gene clusters in a vent mussel symbiont population” (英語). The ISME Journal 10 (4): 990–1001. doi:10.1038/ismej.2015.176. ISSN 1751-7362. PMC 4796938. PMID 26418631. http://www.nature.com/articles/ismej2015176. 
  45. ^ Yamamoto, Masahiro; Nakamura, Ryuhei; Kasaya, Takafumi; Kumagai, Hidenori; Suzuki, Katsuhiko; Takai, Ken (2017-05-15). “Spontaneous and Widespread Electricity Generation in Natural Deep-Sea Hydrothermal Fields” (英語). Angewandte Chemie International Edition 56 (21): 5725–5728. doi:10.1002/anie.201701768. https://onlinelibrary.wiley.com/doi/10.1002/anie.201701768. 
  46. ^ Yamamoto, Masahiro; Nakamura, Ryuhei; Kasaya, Takafumi; Kumagai, Hidenori; Suzuki, Katsuhiko; Takai, Ken (2017-05-15). “Spontaneous and Widespread Electricity Generation in Natural Deep-Sea Hydrothermal Fields” (英語). Angewandte Chemie 129 (21): 5819–5822. doi:10.1002/ange.201701768. https://onlinelibrary.wiley.com/doi/10.1002/ange.201701768. 
  47. ^ 生命の起源を解く重要なヒントとなる「海底熱水-液体/超臨界CO2仮説」の提唱 海洋研究開発機構(2022年11月16日)2022年12月9日閲覧
  48. ^ Dodd, Matthew S.; Papineau, Dominic; Grenne, Tor; Slack, John F.; Rittner, Martin; Pirajno, Franco; O'Neil, Jonathan; Little, Crispin T. S. (2 March 2017). “Evidence for early life in Earth's oldest hydrothermal vent precipitates”. Nature 543 (7643): 60-64. Bibcode2017Natur.543...60D. doi:10.1038/nature21377. PMID 28252057. http://eprints.whiterose.ac.uk/112179/1/ppnature21377_Dodd_for%20Symplectic.pdf. 
  49. ^ Zimmer, Carl (2017年3月1日). “Scientists Say Canadian Bacteria Fossils May Be Earth's Oldest”. New York Times. https://www.nytimes.com/2017/03/01/science/earths-oldest-bacteria-fossils.html 2017年3月2日閲覧。 
  50. ^ Ghosh, Pallab (2017年3月1日). “Earliest evidence of life on Earth 'found'”. BBC News. https://www.bbc.co.uk/news/science-environment-39117523 2017年3月2日閲覧。 
  51. ^ Hannington, M.D. (2014). “Volcanogenic Massive Sulfide Deposits”. Treatise on Geochemistry. pp. 463-488. doi:10.1016/B978-0-08-095975-7.01120-7. ISBN 978-0-08-098300-4 
  52. ^ Degens, Egon T. (ed.), 1969, Hot Brines and Recent Heavy Metal Deposits in the Red Sea, 600 pp, Springer-Verlag
  53. ^ Kathleen., Crane (2003). Sea legs : tales of a woman oceanographer. Boulder, Colo.: Westview Press. ISBN 9780813342856. OCLC 51553643. https://archive.org/details/sealegstalesofwo00cran 
  54. ^ What is a hydrothermal vent?”. National Ocean Service. National Oceanic and Atmospheric Administration. 2018年4月10日閲覧。
  55. ^ Lonsdale, P. (1977). “Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers”. Deep-Sea Research 24 (9): 857-863. Bibcode1977DSR....24..857L. doi:10.1016/0146-6291(77)90478-7. 
  56. ^ Crane, Kathleen; Normark, William R. (10 November 1977). “Hydrothermal activity and crestal structure of the East Pacific Rise at 21°N”. Journal of Geophysical Research 82 (33): 5336-5348. Bibcode1977JGR....82.5336C. doi:10.1029/jb082i033p05336. 
  57. ^ a b Dive and Discover: Expeditions to the Seafloor”. www.divediscover.whoi.edu. 2016年1月4日閲覧。
  58. ^ Davis, Rebecca; Joyce, Christopher (2011年12月5日). “The Deep-Sea Find That Changed Biology” (英語). NPR.org. https://www.npr.org/2011/12/05/142678239/the-deep-sea-find-that-changed-biology 2018年4月9日閲覧。 
  59. ^ Corliss, John B.; Dymond, Jack; Gordon, Louis I.; Edmond, John M.; von Herzen, Richard P.; Ballard, Robert D.; Green, Kenneth; Williams, David et al. (16 March 1979). “Submarine Thermal Springs on the Galápagos Rift”. Science 203 (4385): 1073-1083. Bibcode1979Sci...203.1073C. doi:10.1126/science.203.4385.1073. PMID 17776033. 
  60. ^ Spiess, F. N.; Macdonald, K. C.; Atwater, T.; Ballard, R.; Carranza, A.; Cordoba, D.; Cox, C.; Garcia, V. M. D. et al. (28 March 1980). “East Pacific Rise: Hot Springs and Geophysical Experiments”. Science 207 (4438): 1421-1433. Bibcode1980Sci...207.1421S. doi:10.1126/science.207.4438.1421. PMID 17779602. 
  61. ^ Francheteau, J (1979). “Massive deep-sea sulphide ore deposits discovered on the East Pacific Rise”. Nature 277 (5697): 523. Bibcode1979Natur.277..523F. doi:10.1038/277523a0. https://archimer.ifremer.fr/doc/1979/publication-5278.pdf. 
  62. ^ Macdonald, K. C.; Becker, Keir; Spiess, F. N.; Ballard, R. D. (1980). “Hydrothermal heat flux of the "black smoker" vents on the East Pacific Rise”. Earth and Planetary Science Letters 48 (1): 1-7. Bibcode1980E&PSL..48....1M. doi:10.1016/0012-821X(80)90163-6. 
  63. ^ Haymon, Rachel M.; Kastner, Miriam (1981). “Hot spring deposits on the East Pacific Rise at 21°N: preliminary description of mineralogy and genesis” (英語). Earth and Planetary Science Letters 53 (3): 363-381. Bibcode1981E&PSL..53..363H. doi:10.1016/0012-821X(81)90041-8. 
  64. ^ “New undersea vent suggests snake-headed mythology”. EurekaAert. (2007年4月18日). http://www.eurekalert.org/pub_releases/2007-04/du-nuv041707.php 2007年4月18日閲覧。 
  65. ^ Beebe”. Interridge Vents Database. 2020年9月17日閲覧。
  66. ^ a b c “カリブの海底に世界最深の熱水噴出孔”. National Geographic News. (2010年4月13日). http://natgeo.nikkeibp.co.jp/nng/article/news/14/2554/ 2016年6月14日閲覧。 
  67. ^ a b “噴き出す黒煙、世界最深の熱水噴出孔”. National Geographic News. (2012年1月10日). http://natgeo.nikkeibp.co.jp/nng/article/news/14/5472/ 2016年6月14日閲覧。 
  68. ^ German, C. R. (2010). “Diverse styles of submarine venting on the ultraslow spreading Mid-Cayman Rise”. Proceedings of the National Academy of Sciences 107 (32): 14020-5. Bibcode2010PNAS..10714020G. doi:10.1073/pnas.1009205107. PMC 2922602. PMID 20660317. http://www.geology.wisc.edu/astrobiology/docs/German_et_al_2010_PNAS.pdf 2010年12月31日閲覧。. 
  69. ^ a b “カリブ海の世界最深の噴出孔で新種続々発見、目のないエビなど”. AFPBB News. (2012年1月12日). https://www.afpbb.com/articles/-/2850113?pid=8279391 2012年1月12日閲覧。 
  70. ^ Shukman, David (2013年2月21日). “Deepest undersea vents discovered by UK team”. BBC News. https://www.bbc.co.uk/news/science-environment-21520404 2013年2月21日閲覧。 
  71. ^ Broad, William J. (2016年1月12日). “The 40,000-Mile Volcano”. The New York Times. ISSN 0362-4331. https://www.nytimes.com/2016/01/12/science/midocean-ridges-volcano-underwater.html 2016年1月17日閲覧。 
  72. ^ Leal-Acosta, María Luisa; Prol-Ledesma, Rosa María (2016). “Caracterización geoquímica de las manifestaciones termales intermareales de Bahía Concepción en la Península de Baja California” (Spanish). Boletín de la Sociedad Geológica Mexicana 68 (3): 395-407. doi:10.18268/bsgm2016v68n3a2. JSTOR 24921551. 
  73. ^ Beaulieu, Stace E.; Baker, Edward T.; German, Christopher R.; Maffei, Andrew (November 2013). “An authoritative global database for active submarine hydrothermal vent fields”. Geochemistry, Geophysics, Geosystems 14 (11): 4892-4905. Bibcode2013GGG....14.4892B. doi:10.1002/2013GC004998. 
  74. ^ Rogers, Alex D.; Tyler, Paul A.; Connelly, Douglas P.; Copley, Jon T.; James, Rachael; Larter, Robert D.; Linse, Katrin; Mills, Rachel A. et al. (3 January 2012). “The Discovery of New Deep-Sea Hydrothermal Vent Communities in the Southern Ocean and Implications for Biogeography”. PLoS Biology 10 (1): e1001234. doi:10.1371/journal.pbio.1001234. PMC 3250512. PMID 22235194. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3250512/. 
  75. ^ Perkins, W. G. (1 July 1984). “Mount Isa silica dolomite and copper orebodies; the result of a syntectonic hydrothermal alteration system”. Economic Geology 79 (4): 601-637. doi:10.2113/gsecongeo.79.4.601. 
  76. ^ We Are About to Start Mining Hydrothermal Vents on the Ocean Floor. Nautilus; Brandon Keim. 12 September 2015.
  77. ^ Ginley (2014年). “Categorizing mineralogy and geochemistry of Algoma type banded iron formation, Temagami, ON”. 2017年11月14日閲覧。
  78. ^ “Liberating Japan's resources”. The Japan Times. (2012年6月25日). https://www.japantimes.co.jp/opinion/2012/06/25/commentary/japan-commentary/liberating-japans-resources/ 
  79. ^ Government of Canada (2017年1月23日). “Mining Sector Market Overview 2016 - Japan”. www.tradecommissioner.gc.ca. 2019年3月11日閲覧。
  80. ^ "Nautilus Outlines High Grade Au - Cu Seabed Sulphide Zone" (Press release). Nautilus Minerals. 25 May 2006. 2009年1月29日時点のオリジナルよりアーカイブ。
  81. ^ Neptune Minerals”. 2012年8月2日閲覧。
  82. ^ We Are About to Start Mining Hydrothermal Vents on the Ocean Floor. Nautilus; Brandon Keim. 12 September 2015.
  83. ^ Birney. “Potential Deep-Sea Mining of Seafloor Massive Sulfides: A case study in Papua New Guinea”. University of California, Santa Barbara, B[リンク切れ]. 2020年9月16日閲覧。
  84. ^ “Treasures from the deep”. Chemistry World. (January 2007). http://www.rsc.org/chemistryworld/issues/2007/january/treasuresdeep.asp. 
  85. ^ Amon, Diva; Thaler, Andrew D. (2019-08-06). “262 Voyages Beneath the Sea: a global assessment of macro- and megafaunal biodiversity and research effort at deep-sea hydrothermal vents” (英語). PeerJ 7: e7397. doi:10.7717/peerj.7397. ISSN 2167-8359. https://peerj.com/articles/7397. 
  86. ^ The secret on the ocean floor. David Shukman, BBC News. 19 February 2018.
  87. ^ Devey, C.W.; Fisher, C.R.; Scott, S. (2007). “Responsible Science at Hydrothermal Vents”. Oceanography 20 (1): 162-72. doi:10.5670/oceanog.2007.90. http://www.tos.org/oceanography/issues/issue_archive/issue_pdfs/20_1/20.1_devey_et_al.pdf. 
  88. ^ Johnson, M. (2005). “Oceans need protection from scientists too”. Nature 433 (7022): 105. Bibcode2005Natur.433..105J. doi:10.1038/433105a. PMID 15650716. 
  89. ^ Johnson, M. (2005). “Deepsea vents should be world heritage sites”. MPA News 6: 10. https://mpanews.openchannels.org/news/mpa-news/mpa-perspective-deep-sea-vents-should-be-world-heritage-sites. 
  90. ^ Tyler, P.; German, C.; Tunnicliff, V. (2005). “Biologists do not pose a threat to deep-sea vents”. Nature 434 (7029): 18. Bibcode2005Natur.434...18T. doi:10.1038/434018b. PMID 15744272. 





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「熱水噴出孔」の関連用語

熱水噴出孔のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



熱水噴出孔のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの熱水噴出孔 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS