least squares methodとは? わかりやすく解説

Weblio 辞書 > 工学 > 透過電子顕微鏡用語 > least squares methodの意味・解説 

最小二乗法

【英】:least-squares method

実験値と計算値の残差二乗和を最小にするように未知パラメータ決定する方法結晶構造解析分光スペクトル波形分離などに利用されている。未知パラメータ線形結合(Σai・xi + b)によって残差二乗和を最小化する場合を(線形)という。フィッティング非線形関数用い場合非線形という。関数仮定せず数値計算によって未知パラメータフィッティングを行う場合非線形である。たとえば、収束電子回折図形強度結晶構造モデルから計算される強度との残差二乗和の値を最小にするような構造パラメータ原子位置温度因子)を求めるのに使われる。ある構造パラメータの組について残差二乗和を求め残差二乗和の各パラメータ対す微分が負になるような構造パラメータの組を発生させ、それらの値に対す残差二乗和を計算する。この過程繰り返して残差二乗和の最小値到達する

説明に「最小二乗法」が含まれている用語

  • 最小二乗法

最小二乗法

(least squares method から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/08/23 01:22 UTC 版)

データセットを4次関数で最小二乗近似した例

最小二乗法(さいしょうにじょうほう、さいしょうじじょうほう;最小自乗法とも書く、: least squares method)は、誤差を伴う測定値の処理において、その誤差の二乗の和を最小にするようにし、最も確からしい関係式を求める方法である。測定で得られた数値の組を、適当なモデルから想定される1次関数対数曲線など特定の関数を用いて近似するときに、想定する関数が測定値に対してよい近似となるように、残差平方和を最小とするような係数を決定する方法[1][2][3]、あるいはそのような方法によって近似を行うことである[1][2][3]

歴史

1805年アドリアン=マリ・ルジャンドルが出版したのが初出である。しかし、1809年カール・フリードリヒ・ガウスが出版した際に1795年には最小二乗法を考案済みだったと主張したことで、最小二乗法の発明者が誰であるかについては不明になっている。

計算の概要

前提条件

最小二乗法では測定データ

脚注

注釈

  1. ^ 要購読契約)
  2. ^ a b c Björck, Åke (1996). Numerical Methods for Least Squares Problems. Society for Industrial and Applied Mathematics. doi:10.1137/1.9781611971484. https://epubs.siam.org/doi/abs/10.1137/1.9781611971484 
  3. ^ a b 山本哲朗『数値解析入門』(増訂版)サイエンス社〈サイエンスライブラリ 現代数学への入門 14〉、2003年6月。ISBN 4-7819-1038-6 
  4. ^ Hansen, Per Christian (1987). “The truncated SVD as a method for regularization”. BIT Numerical Mathematics (Springer) 27: 534-553. doi:10.1007/BF01937276. https://doi.org/10.1007/BF01937276.  (要購読契約)
  5. ^ 安川章. (2017). 科学実験/画像変換の近似計算に便利な 「疑似逆行列」 入門 できる人が使っている最小二乗法の一発フィット. インターフェース= Interface, 43(8), 142-146.
  6. ^ Weisstein, Eric W. "Chi-Squared Distribution." From MathWorld--A Wolfram Web Resource. mathworld.wolfram.com/Chi-SquaredDistribution.html
  7. ^ MAGREÑÁN, Alberto; Argyros, Ioannis (2018). A contemporary study of iterative methods: convergence, dynamics and applications. Academic Press. https://books.google.co.jp/books?hl=ja&lr=lang_ja 
  8. ^ Weisstein, Eric W. "Levenberg-Marquardt Method." From MathWorld--A Wolfram Web Resource. mathworld.wolfram.com/Levenberg-MarquardtMethod.html
  9. ^ a b Moré Jorge J. (1978). “The Levenberg-Marquardt algorithm : Implementation and theory”. Lecture Notes in Mathematics 630: 105-116. doi:10.1007/BFb0067700. https://link.springer.com/chapter/10.1007/BFb0067700.  (要購読契約)
  10. ^ a b Yu, H., & Wilamowski, B. M. (2011). Levenberg-marquardt training. Industrial electronics handbook, 5(12), 1.
  11. ^ a b Ranganathan, Ananth (2004). “The levenberg-marquardt algorithm” (PDF). Tutoral on LM algorithm 11 (1): 101-110. https://sites.cs.ucsb.edu/~yfwang/courses/cs290i_mvg/pdf/LMA.pdf. 
  12. ^ 山下信雄, 福島雅夫「Levenberg-Marquardt法の局所収束性について (最適化の数理科学)」『数理解析研究所講究録』第1174巻、京都大学数理解析研究所、2000年10月、161-168頁、CRID 1050001201691367552hdl:2433/64462ISSN 1880-2818 
  13. ^ Michele Rienzner (2020). Find Outliers with Thompson Tau (www.mathworks.com/matlabcentral/fileexchange/27553-find-outliers-with-thompson-tau), MATLAB Central File Exchange. Retrieved May 17, 2020.
  14. ^ Van Huffel, S., & Vandewalle, J. (1991). The total least squares problem: computational aspects and analysis (Vol. 9). SIAM.
  15. ^ Golub, Gene H; Van Loan, Charles F (1980). “An analysis of the total least squares problem”. SIAM journal on numerical analysis (SIAM) 17 (6): 883-893. doi:10.1137/0717073. https://doi.org/10.1137/0717073. 
  16. ^ Drygas, H. (2012). The coordinate-free approach to Gauss-Markov estimation (Vol. 40). Springer Science & Business Media.
  17. ^ Motulsky, H., & Christopoulos, A. (2004). Fitting models to biological data using linear and nonlinear regression: a practical guide to curve fitting. Oxford University Press.

「least-squares method」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「least squares method」の関連用語

least squares methodのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



least squares methodのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
日本電子株式会社日本電子株式会社
Copyright(C)1996-2025 JEOL Ltd., All Rights Reserved.
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの最小二乗法 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS