Z-DNAとは? わかりやすく解説

Z-DNA

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/05/25 04:59 UTC 版)

Z-DNAまたはZ型DNAは、DNAがとりうる二重らせん構造のうちの1つである。一般的な右巻きのB-DNAとは異なり、左方向へジグザグに巻いた二重らせん構造をしている。Z-DNAは、A-DNA、B-DNAとともに生物学的活性のある3つの二重らせん構造の1つであると考えられている。


  1. ^ Mitsui, Y.; Langridge, R.; Shortle, B. E.; Cantor, C. R.; Grant, R. C.; Kodama, M.; Wells, R. D. (1970). “Physical and enzymatic studies on poly d(I–C)·poly d(I–C), an unusual double-helical DNA”. Nature 228 (5277): 1166–1169. doi:10.1038/2281166a0. PMID 4321098. 
  2. ^ Pohl, F. M.; Jovin, T. M. (1972). “Salt-induced co-operative conformational change of a synthetic DNA: equilibrium and kinetic studies with poly(dG-dC)”. Journal of Molecular Biology 67 (3): 375–396. doi:10.1016/0022-2836(72)90457-3. PMID 5045303. 
  3. ^ Thamann, T. J.; Lord, R. C.; Wang, A. H.; Rich, A. (1981). “High salt form of poly(dG–dC)·poly(dG–dC) is left handed Z-DNA: raman spectra of crystals and solutions”. Nucleic Acids Research 9 (20): 5443–5457. doi:10.1093/nar/9.20.5443. PMC 327531. PMID 7301594. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC327531/. 
  4. ^ Wang, A. H.; Quigley, G. J.; Kolpak, F. J.; Crawford, J. L.; van Boom, J. H.; van der Marel, G.; Rich, A. (1979). “Molecular structure of a left-handed double helical DNA fragment at atomic resolution”. Nature 282 (5740): 680–686. Bibcode1979Natur.282..680W. doi:10.1038/282680a0. PMID 514347. 
  5. ^ a b Ha, S. C.; Lowenhaupt, K.; Rich, A.; Kim, Y. G.; Kim, K. K. (2005). “Crystal structure of a junction between B-DNA and Z-DNA reveals two extruded bases”. Nature 437 (7062): 1183–1186. Bibcode2005Natur.437.1183H. doi:10.1038/nature04088. PMID 16237447. 
  6. ^ Hall, K.; Cruz, P.; Tinoco, I., Jr; Jovin, T. M.; van de Sande, J. H. (Oct 1984). “'Z-RNA'—a left-handed RNA double helix”. Nature 311 (5986): 584–586. Bibcode1984Natur.311..584H. doi:10.1038/311584a0. PMID 6482970. 
  7. ^ Placido, D.; Brown, B. A., II; Lowenhaupt, K.; Rich, A.; Athanasiadis, A. (2007). “A left-handed RNA double helix bound by the Zalpha domain of the RNA-editing enzyme ADAR1”. Structure 15 (4): 395–404. doi:10.1016/j.str.2007.03.001. PMC 2082211. PMID 17437712. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2082211/. 
  8. ^ de Rosa, M.; de Sanctis, D.; Rosario, A. L.; Archer, M.; Rich, A.; Athanasiadis, A.; Carrondo, M. A. (May 2010). “Crystal structure of a junction between two Z-DNA helices”. Proceedings of the National Academy of Sciences 107 (20): 9088–9092. Bibcode2010PNAS..107.9088D. doi:10.1073/pnas.1003182107. PMC 2889044. PMID 20439751. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2889044/. 
  9. ^ Zhang, H.; Yu, H.; Ren, J.; Qu, X. (2006). “Reversible B/Z-DNA transition under the low salt condition and non-B-form poly(dA)poly(dT) selectivity by a cubane-like europium-L-aspartic acid complex”. Biophysical Journal 90 (9): 3203–3207. Bibcode2006BpJ....90.3203Z. doi:10.1529/biophysj.105.078402. PMC 1432110. PMID 16473901. http://www.biophysj.org/cgi/content/full/90/9/3203. 
  10. ^ Ho, P. S.; Ellison, M. J.; Quigley, G. J.; Rich, A. (1986). “A computer aided thermodynamic approach for predicting the formation of Z-DNA in naturally occurring sequences”. EMBO Journal 5 (10): 2737–2744. doi:10.1002/j.1460-2075.1986.tb04558.x. PMC 1167176. PMID 3780676. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1167176/. 
  11. ^ a b Champ, P. C.; Maurice, S.; Vargason, J. M.; Camp, T.; Ho, P. S. (2004). “Distributions of Z-DNA and nuclear factor I in human chromosome 22: a model for coupled transcriptional regulation”. Nucleic Acids Research 32 (22): 6501–6510. doi:10.1093/nar/gkh988. PMC 545456. PMID 15598822. http://nar.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=15598822. 
  12. ^ Wang, Andrew H.-J.; Quigley, Gary J.; Kolpak, Francis J.; Crawford, James L.; van Boom, Jacques H.; van der Marel, Gijs; Rich, Alexander (December 1979). “Molecular structure of a left-handed double helical DNA fragment at atomic resolution”. Nature 282 (5740): 680–686. doi:10.1038/282680a0. ISSN 0028-0836. PMID 514347. 
  13. ^ a b Lee, Juyong; Kim, Yang-Gyun; Kim, Kyeong Kyu; Seok, Chaok (2010-08-05). “Transition between B-DNA and Z-DNA: Free Energy Landscape for the B−Z Junction Propagation”. The Journal of Physical Chemistry B 114 (30): 9872–9881. doi:10.1021/jp103419t. ISSN 1520-6106. 
  14. ^ a b c d Kim, Sook Ho; Lim, So-Hee; Lee, Ae-Ree; Kwon, Do Hoon; Song, Hyun Kyu; Lee, Joon-Hwa; Cho, Minhaeng; Johner, Albert et al. (2018-03-23). “Unveiling the pathway to Z-DNA in the protein-induced B–Z transition”. Nucleic Acids Research 46 (8): 4129–4137. doi:10.1093/nar/gky200. ISSN 0305-1048. PMC 5934635. PMID 29584891. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5934635/. 
  15. ^ Herbert, A.; Alfken, J.; Kim, Y.-G.; Mian, I. S.; Nishikura, K.; Rich, A. (1997-08-05). “A Z-DNA binding domain present in the human editing enzyme, double-stranded RNA adenosine deaminase”. Proceedings of the National Academy of Sciences 94 (16): 8421–8426. doi:10.1073/pnas.94.16.8421. ISSN 0027-8424. PMC 22942. PMID 9237992. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC22942/. 
  16. ^ Herbert, A. (2019). “Mendelian disease caused by variants affecting recognition of Z-DNA and Z-RNA by the Zα domain of the double-stranded RNA editing enzyme ADAR.”. European Journal of Human Genetics 8: 114–117. doi:10.1038/s41431-019-0458-6. PMC 6906422. PMID 31320745. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6906422/. 
  17. ^ Herbert, A. (2019). “ADAR and Immune Silencing in Cancer.”. Trends in Cancer 5 (5): 272-282. doi:10.1016/j.trecan.2019.03.004. PMID 31174840. 
  18. ^ a b Suram, Anitha; Rao, K. S. Jagannatha; Latha, K. S.; Viswamitra, M. A. (2002). “First evidence to show the topological change of DNA from B-dNA to Z-DNA conformation in the hippocampus of Alzheimer's brain”. Neuromolecular Medicine 2 (3): 289–297. doi:10.1385/nmm:2:3:289. ISSN 1535-1084. PMID 12622407. https://www.ncbi.nlm.nih.gov/pubmed/12622407. 
  19. ^ Lafer, E M; Valle, R P; Möller, A; Nordheim, A; Schur, P H; Rich, A; Stollar, B D (1983-02-01). “Z-DNA-specific antibodies in human systemic lupus erythematosus.”. Journal of Clinical Investigation 71 (2): 314–321. doi:10.1172/jci110771. ISSN 0021-9738. PMC 436869. PMID 6822666. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC436869/. 
  20. ^ Rich, A; Zhang, S (2003). “Timeline: Z-DNA: the long road to biological function”. Nature Reviews Genetics 4 (7): 566–572. doi:10.1038/nrg1115. PMID 12838348. 
  21. ^ Wittig, B.; Dorbic, T.; Rich, A. (1991). “Transcription is associated with Z-DNA formation in metabolically active permeabilized mammalian cell nuclei”. Proceedings of the National Academy of Sciences 88 (6): 2259–2263. Bibcode1991PNAS...88.2259W. doi:10.1073/pnas.88.6.2259. PMC 51210. PMID 2006166. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC51210/. 
  22. ^ Wong, B.; Chen, S.; Kwon, J.-A.; Rich, A. (2007). “Characterization of Z-DNA as a nucleosome-boundary element in yeast Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences 104 (7): 2229–2234. Bibcode2007PNAS..104.2229W. doi:10.1073/pnas.0611447104. PMC 1892989. PMID 17284586. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1892989/. 
  23. ^ a b Wang, G.; Christensen, L. A.; Vasquez, K. M. (2006). “Z-DNA-forming sequences generate large-scale deletions in mammalian cells”. Proceedings of the National Academy of Sciences 108 (8): 2677–2682. Bibcode2006PNAS..103.2677W. doi:10.1073/pnas.0511084103. PMC 1413824. PMID 16473937. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1413824/. 
  24. ^ a b Freund, A. M.; Bichara, M.; Fuchs, R. P. (1989). “Z-DNA-forming sequences are spontaneous deletion hot spots”. Proceedings of the National Academy of Sciences 86 (19): 7465–7469. Bibcode1989PNAS...86.7465F. doi:10.1073/pnas.86.19.7465. PMC 298085. PMID 2552445. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC298085/. 
  25. ^ Roy Chowdhury, A.; Bakshi, R.; Wang, J.; Yıldırır, G.; Liu, B.; Pappas-Brown, V.; Tolun, G.; Griffith, J. D. et al. (Dec 2010). “The killing of African trypanosomes by ethidium bromide”. PLoS Pathogens 6 (12): e1001226. doi:10.1371/journal.ppat.1001226. PMC 3002999. PMID 21187912. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3002999/. 
  26. ^ Herbert, A.; Rich, A. (1993). “A method to identify and characterize Z-DNA binding proteins using a linear oligodeoxynucleotide”. Nucleic Acids Research 21 (11): 2669–2672. doi:10.1093/nar/21.11.2669. PMC 309597. PMID 8332463. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC309597/. 
  27. ^ a b Herbert, A.; Alfken, J.; Kim, Y. G.; Mian, I. S.; Nishikura, K.; Rich, A. (1997). “A Z-DNA binding domain present in the human editing enzyme, double-stranded RNA adenosine deaminase.”. Proceedings of the National Academy of Sciences 94 (16): 8421–8426. Bibcode1997PNAS...94.8421H. doi:10.1073/pnas.94.16.8421. PMC 22942. PMID 9237992. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC22942/. 
  28. ^ Herbert, A.; Schade, M.; Lowenhaupt, K.; Alfken, J; Schwartz, T.; Shlyakhtenko, L. S.; Lyubchenko, Y. L.; Rich, A. (1998). “The Zα domain from human ADAR1 binds to the Z-DNA conformer of many different sequences”. Nucleic Acids Research 26 (15): 2669–2672. doi:10.1093/nar/26.15.3486. PMC 147729. PMID 9671809. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC147729/. 
  29. ^ Schwartz, T.; Rould, M. A.; Lowenhaupt, K.; Herbert, A.; Rich, A. (1999). “Crystal structure of the Zα domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA”. Science 284 (5421): 1841–1845. doi:10.1126/science.284.5421.1841. PMID 10364558. 
  30. ^ Schade, M.; Turner, C. J.; Kühne, R.; Schmieder, P.; Lowenhaupt, K.; Herbert, A.; Rich, A.; Oschkinat, H (1999). “The solution structure of the Zα domain of the human RNA editing enzyme ADAR1 reveals a prepositioned binding surface for Z-DNA”. Proceedings of the National Academy of Sciences 96 (22): 2465–2470. Bibcode1999PNAS...9612465S. doi:10.1073/pnas.96.22.12465. PMC 22950. PMID 10535945. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC22950/. 
  31. ^ Herbert, A.; Rich, A. (2001). “The role of binding domains for dsRNA and Z-DNA in the in vivo editing of minimal substrates by ADAR1”. Proceedings of the National Academy of Sciences 98 (21): 12132–12137. Bibcode2001PNAS...9812132H. doi:10.1073/pnas.211419898. PMC 59780. PMID 11593027. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC59780/. 
  32. ^ Halber, D. (1999年9月11日). “Scientists observe biological activities of 'left-handed' DNA”. MIT News Office. 2008年9月29日閲覧。
  33. ^ Herbert, A. (2019). “Z-DNA and Z-RNA in human disease”. Communications Biology 2: 7. doi:10.1038/s42003-018-0237-x. PMC 6323056. PMID 30729177. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6323056/. 
  34. ^ Herbert, A. (2019). “Mendelian disease caused by variants affecting recognition of Z-DNA and Z-RNA by the Zα domain of the double-stranded RNA editing enzyme ADAR.”. European Journal of Human Genetics 8: 114–117. doi:10.1038/s41431-019-0458-6. PMC 6906422. PMID 31320745. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6906422/. 
  35. ^ a b Kwon, J.-A.; Rich, A. (2005-08-26). “Biological function of the vaccinia virus Z-DNA-binding protein E3L: Gene transactivation and antiapoptotic activity in HeLa cells”. Proceedings of the National Academy of Sciences 102 (36): 12759–12764. doi:10.1073/pnas.0506011102. ISSN 0027-8424. 
  36. ^ a b c d Kim, Y.-G.; Muralinath, M.; Brandt, T.; Pearcy, M.; Hauns, K.; Lowenhaupt, K.; Jacobs, B. L.; Rich, A. (2003-05-30). “A role for Z-DNA binding in vaccinia virus pathogenesis”. Proceedings of the National Academy of Sciences 100 (12): 6974–6979. doi:10.1073/pnas.0431131100. ISSN 0027-8424. PMC 165815. PMID 12777633. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC165815/. 
  37. ^ Kim, Y.-G.; Lowenhaupt, K.; Oh, D.-B.; Kim, K. K.; Rich, A. (2004-02-02). “Evidence that vaccinia virulence factor E3L binds to Z-DNA in vivo: Implications for development of a therapy for poxvirus infection”. Proceedings of the National Academy of Sciences 101 (6): 1514–1518. doi:10.1073/pnas.0308260100. ISSN 0027-8424. 
  38. ^ Sinden, Richard R. (1994). DNA Structure and Function (1st ed.). Academic Press. p. 398. ISBN 978-0-126-45750-6 
  39. ^ Rich, A.; Norheim, A.; Wang, A. H. (1984). “The chemistry and biology of left-handed Z-DNA”. Annual Review of Biochemistry 53 (1): 791–846. doi:10.1146/annurev.bi.53.070184.004043. PMID 6383204. 
  40. ^ Ho, P. S. (1994-09-27). “The non-B-DNA structure of d(CA/TG)n does not differ from that of Z-DNA”. Proceedings of the National Academy of Sciences 91 (20): 9549–9553. Bibcode1994PNAS...91.9549H. doi:10.1073/pnas.91.20.9549. PMC 44850. PMID 7937803. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC44850/. 


「Z-DNA」の続きの解説一覧

Z-DNA

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/11/09 09:39 UTC 版)

二重らせん」の記事における「Z-DNA」の解説

左巻き1回転あたり塩基12塩基対間距離3.7 Å、らせんの直径18 Å、グアニンシトシン繰り返し配列がとる立体構造

※この「Z-DNA」の解説は、「二重らせん」の解説の一部です。
「Z-DNA」を含む「二重らせん」の記事については、「二重らせん」の概要を参照ください。

ウィキペディア小見出し辞書の「Z-DNA」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  Z-DNAのページへのリンク

辞書ショートカット

すべての辞書の索引

「Z-DNA」の関連用語

Z-DNAのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



Z-DNAのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのZ-DNA (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの二重らせん (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2024 GRAS Group, Inc.RSS