SYZ予想
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/10/09 07:07 UTC 版)
Jump to navigation Jump to search
![]() |
原文と比べた結果、この記事には多数(少なくとも 5 個以上)の誤訳があることが判明しています。情報の利用には注意してください。
正確な語句に改訳できる方を求めています。 |
弦理論 | ||||||||
---|---|---|---|---|---|---|---|---|
![]()
|
||||||||
|
||||||||
SYZ予想(SYZ conjecture)は、ミラー対称性予想を理解しようという理論物理学者と数学者による試みである。もともとの予想は、アンドリュー・ストロミンジャー(Andrew Strominger)、シン=トゥン・ヤウ(Shing-Tung Yau)、エリック・ザスロフ(Eric Zaslow)による論文 "Mirror Symmetry is T-duality"[1] で提唱された。
SYZ予想は、ホモロジカルミラー対称性予想に沿い、ミラー対称性の理解を数学のことばで行うことの中でもっとも研究されている道具のひとつである。ホモロジカルミラー対称性がホモロジー代数を基礎としていることに対し、SYZ予想はミラー対称性を幾何学的に実現しようとする。
定式化
弦理論では、ミラー対称性は、タイプ IIAとタイプ IIBを関連付け、2つの理論がミラーペアとなるような多様体にコンパクト化すると、タイプ IIAの有効場の理論がタイプ IIBの理論に等価となるはずであると予言する。
SYZ予想は、この事実を使いミラー対称性を実現する。X の上へコンパクト化されたタイプ IIAの理論のBPS状態、特にモジュライ空間 X を持つ 0-ブレーン を考えることから始める。Y の上へコンパクト化されたタイプ IIBの理論のすべての BPS状態は 3-ブレーン であることが知られている。従って、ミラー対称性は、タイプ IIAの理論の 0-ブレーン をタイプIIBの理論の 3-ブレーンの部分集合へ写像する。
超対称性条件を考えることにより、これらの 3-ブレーン は特殊ラグランジアン部分多様体であることが示されている[2][3]。他方、T-双対はこの場合と同じ変換となるので、ミラー対称性は T-双対 である。
参考文献
- ^ Strominger, Andrew; Yau, Shing-Tung; Zaslow, Eric (1996), “Mirror symmetry is T-duality”, Nuclear Physics B 479 (1–2): 243–259, arXiv:hep-th/9606040, Bibcode 1996NuPhB.479..243S, doi:10.1016/0550-3213(96)00434-8.
- ^ Becker, Katrin; Becker, Melanie; Strominger, Andrew (1995), “Fivebranes, membranes and non-perturbative string theory”, Nuclear Physics B 456 (1–2): 130–152, arXiv:hep-th/9507158, Bibcode 1995NuPhB.456..130B, doi:10.1016/0550-3213(95)00487-1.
- ^ Harvey, Reese; Lawson, H. Blaine, Jr. (1982), “Calibrated geometries”, Acta Mathematica 148 (1): 47–157, doi:10.1007/BF02392726.
SYZ予想
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/12/12 05:10 UTC 版)
「ミラー対称性 (弦理論)」の記事における「SYZ予想」の解説
詳細は「SYZ予想」を参照 ミラー対称性を理解しようとするもう一つのアプローチは、アンドリュー・ストロミンジャー(Andrew Strominger)、シン=トゥン・ヤウ(en:Shing-Tung Yau)、エリック・ザスロフ(英語版)(Eric Zaslow)により1996年の論文で示唆された。 SYZ予想に従うと、ミラー対称性は複雑なカラビ・ヤウ多様体をより単純なピースへ分解し、これらのピースの上での T-双対を考えることにより理解することができる。 オーバービューのセクションでトーラスを考えたことを思い出すと、このトーラスが2つの円の積とみなすことができた。このことは、(図の中の赤い円として示したように)縦の円(経線)を集めた合併として考えることができることを意味する。これらの円をどのように編成するかという補助的な空間が存在し、この空間自体が円となる(ピンクの円で示した)。この空間はトーラス上で経線の円をパラメトライズすると言われる。上で説明したように、ミラー対称性は経線に作用するT-双対に同値で、半径 R 1 {\displaystyle R_{1}} から 1 / R 1 {\displaystyle 1/R_{1}} へ変換することとなる。 SYZ予想は、このアイデアをより複雑な6次元カラビ・ヤウ多様体の場合へ一般化した予想である。トーラスの場合のように、6次元カラビ・ヤウ多様体をより単純なピースへ分割することができ、この場合には3次元トーラス(英語版)が3次元球面によりパラメトライズされる。 T-双対はこの分解に現れるように、円から3次元トーラスへ拡張が可能で、SYZ予想はミラー対称性がこれらの3次元トーラスのT-双対の同時に適用さることと同値であることを言っている。 このようにして、SYZ予想はカラビ・ヤウ多様体の上にミラー対称性がどのように作用するかの幾何学的な素描を与えた。
※この「SYZ予想」の解説は、「ミラー対称性 (弦理論)」の解説の一部です。
「SYZ予想」を含む「ミラー対称性 (弦理論)」の記事については、「ミラー対称性 (弦理論)」の概要を参照ください。
- SYZ予想のページへのリンク