MDシミュレーションにおけるポテンシャル
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/02/01 08:35 UTC 版)
「分子動力学法」の記事における「MDシミュレーションにおけるポテンシャル」の解説
詳細は「原子間ポテンシャル」および「力場 (化学)」を参照 分子動力学シミュレーションはポテンシャル関数(シミュレーション中の粒子の相互作用を決定する項の記述)を必要とする。化学および生物学では通常これは力場と呼ばれ、材料物理学では原子間ポテンシャルと呼ばれる。ポテンシャルは多くの段階の物理学的正確性で定義できる。化学で最も一般的に用いられているものは分子力学法に基づいており、粒子-粒子相互作用の古典的取扱い(構造変化やコンホメーション変化は再現できるが、化学反応は再現できない)を具体化している。 完全な量子力学的記述から古典的ポテンシャルへの簡略化は2つの主要な近似を伴う。1つ目はボルン=オッペンハイマー近似である。この近似では電子のダイナミクスが非常に速く、核の運動に瞬間的反応すると考えることができる、と述べる。結果として、電子の動きと核の動きは別々に扱うことができる。2つ目の近似は、電子よりもかなり重い核を古典ニュートン動力学に従う点粒子として扱う。古典的分子動力学では、電子の影響は単一のポテンシャルエネルギー表面(通常は基底状態を表す)として近似される。 より細かい詳細が必要な時は、量子力学に基づくポテンシャルが用いられる。また、系の大部分を古典的に扱うが、化学的変換が起こる小さな領域を量子系として扱うハイブリッド古典/量子ポテンシャルも開発されている。
※この「MDシミュレーションにおけるポテンシャル」の解説は、「分子動力学法」の解説の一部です。
「MDシミュレーションにおけるポテンシャル」を含む「分子動力学法」の記事については、「分子動力学法」の概要を参照ください。
- MDシミュレーションにおけるポテンシャルのページへのリンク