核内倍加とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 核内倍加の意味・解説 

核内倍加

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/06/10 14:40 UTC 版)

核内倍加(かくないばいか、: endoreduplication, endoreplication, endocycling)は、有糸分裂を経ずにゲノム複製が行われ、内の遺伝子量の増加や多倍性が生じる現象である。核内倍加は、サイクリン依存性キナーゼ(CDK)の活性の変化のために有糸分裂が完全に回避された、細胞周期のバリエーションとして理解することもできる[1][2][3][4]。核内倍加の例は節足動物哺乳類植物で特徴づけられており、さまざまな生物学的機能を果たす細胞種への分化形態形成を担う、普遍的な発生機構であることが示唆される[1][2]。核内倍加は動物では特定の細胞種に限定されている場合が多いのに対し、植物でははるかに広範囲でみられ、多倍性は植物組織の大部分でみられる[5]


  1. ^ a b c d e Edgar BA; Orr-Weaver TL (2001). “Endoreplication cell cycles: more for less”. Cell 105 (3): 297–306. doi:10.1016/S0092-8674(01)00334-8. PMID 11348589. 
  2. ^ a b c d Lee HO; Davidson JM; Duronio RJ (2008). “Endoreplication: polyploidy with purpose”. Genes & Development 23 (21): 2461–77. doi:10.1101/gad.1829209. PMC: 2779750. PMID 19884253. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2779750/. 
  3. ^ a b Edgar, Bruce A.; Zielke, Norman; Gutierrez, Crisanto (2014-02-21). “Endocycles: a recurrent evolutionary innovation for post-mitotic cell growth” (英語). Nature Reviews Molecular Cell Biology 15 (3): 197–210. doi:10.1038/nrm3756. ISSN 1471-0080. PMID 24556841. 
  4. ^ a b Orr-Weaver, Terry L. (2015). “When bigger is better: the role of polyploidy in organogenesis”. Trends in Genetics 31 (6): 307–315. doi:10.1016/j.tig.2015.03.011. PMC: 4537166. PMID 25921783. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537166/. 
  5. ^ Galbraith DW; Harkins KR; Knapp S (1991). “Systemic Endopolyploidy in Arabidopsis thaliana”. Plant Physiology 96 (3): 985–9. doi:10.1104/pp.96.3.985. PMC: 1080875. PMID 16668285. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1080875/. 
  6. ^ Hammond MP; Laird CD (1985). “Control of DNA replication and spatial distribution of defined DNA sequences in salivary gland cells of Drosophila melanogaster”. Chromosoma 91 (3–4): 279–286. doi:10.1007/BF00328223. PMID 3920018. 
  7. ^ Hammond MP; Laird CD (1985). “Chromosome structure and DNA replication in nurse and follicle cells of Drosophila melanogaster”. Chromosoma 91 (3–4): 267–278. doi:10.1007/BF00328222. PMID 3920017. 
  8. ^ Ravid K; Lu J; Zimmet JM; Jones MR (2002). “Roads to polyploidy: The megakaryocyte example”. Journal of Cell Physiology 190 (1): 7–20. doi:10.1002/jcp.10035. PMID 11807806. 
  9. ^ Wang, Min-Jun; Chen, Fei; Lau, Joseph T. Y.; Hu, Yi-Ping (2017-05-18). “Hepatocyte polyploidization and its association with pathophysiological processes” (英語). Cell Death & Disease 8 (5): e2805. doi:10.1038/cddis.2017.167. PMC: 5520697. PMID 28518148. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5520697/. 
  10. ^ Cross JC (2005). “How to make a placenta: Mechanisms of trophoblast cell differentiation in mice-a review”. Placenta 26: S3–9. doi:10.1016/j.placenta.2005.01.015. PMID 15837063. 
  11. ^ Hulskamp M; Schnittger A; Folkers U (1999). Pattern formation and cell differentiation: Trichomes in Arabidopsis as a genetic model system. International Review of Cytology. 186. pp. 147–178. doi:10.1016/S0074-7696(08)61053-0. ISBN 978-0-12-364590-6. PMID 9770299 
  12. ^ a b Melaragno JE; Mehrotra B; Coleman AW (1993). “Relationship between endopolyploidy and cell size in epidermal tissue of Arabidopsis. The Plant Cell 5 (11): 1661–8. doi:10.1105/tpc.5.11.1661. JSTOR 3869747. PMC: 160394. PMID 12271050. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC160394/. 
  13. ^ Sabelli PA; Larkins BA (2009). “The Development of Endosperm in Grasses”. Plant Physiology 149 (1): 14–26. doi:10.1104/pp.108.129437. PMC: 2613697. PMID 19126691. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2613697/. 
  14. ^ a b Flemming AJ; Shen Z; Cunha A; Emmons SW; Leroi AM (2000). “Somatic polyploidization and cellular proliferation drive body size evolution in nematodes”. PNAS 97 (10): 5285–90. doi:10.1073/pnas.97.10.5285. PMC: 25820. PMID 10805788. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC25820/. 
  15. ^ Hedgecock, E. M.; White, J. G. (January 1985). “Polyploid tissues in the nematode Caenorhabditis elegans”. Developmental Biology 107 (1): 128–133. doi:10.1016/0012-1606(85)90381-1. ISSN 0012-1606. PMID 2578115. 
  16. ^ Lozano E; Saez AG; Flemming AJ; Cunha A; Leroi AM (2006). “Regulation of growth by ploidy in Caenorhabditis elegans”. Current Biology 16 (5): 493–8. doi:10.1016/j.cub.2006.01.048. PMID 16527744. 
  17. ^ Kondorosi E; Roudier F; Gendreau E (2000). “Plant cell-size control: Growing by ploidy?”. Current Opinion in Plant Biology 3 (6): 488–492. doi:10.1016/S1369-5266(00)00118-7. PMID 11074380. 
  18. ^ a b Inze D; De Veylder L (2006). “Cell cycle regulation in plant development”. Annual Review of Genetics 40: 77–105. doi:10.1146/annurev.genet.40.110405.090431. PMID 17094738. 
  19. ^ Bramsiepe J; Wester K; Weinl C; Roodbarkelari F; Kasili R; Larkin JC; Hulskamp M; Schnittger A (2010). Qu, Li-Jia. ed. “Endoreplication Controls Cell Fate Maintenance”. PLOS Genetics 6 (6): e1000996. doi:10.1371/journal.pgen.1000996. PMC: 2891705. PMID 20585618. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2891705/. 
  20. ^ Maines JZ; Stevens LM; Tong X; Stein D (2004). “Drosophila dMyc is required for ovary cell growth and endoreplication”. Development 131 (4): 775–786. doi:10.1242/dev.00932. PMID 14724122. 
  21. ^ Leiva-Neto JT; Grafi G; Sabelli PA; Dante RA; Woo YM; Maddock S; Gordon-Kamm WJ; Larkins BA (2004). “A Dominant Negative Mutant of Cyclin-Dependent Kinase A Reduces Endoreduplication but Not Cell Size or Gene Expression in Maize Endosperm”. The Plant Cell 16 (7): 1854–69. doi:10.1105/tpc.022178. PMC: 514166. PMID 15208390. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC514166/. 
  22. ^ Mortimer RK (1958). “Radiobiological and genetic studies on a polyploid series (haploid to hexaploid) of Saccharomyces cerevisiae. Radiation Research 9 (3): 312–326. doi:10.2307/3570795. JSTOR 3570795. PMID 13579200. http://www.escholarship.org/uc/item/9gr1j6n2. 
  23. ^ Cookson, Sarah Jane; Radziejwoski, Amandine; Granier, Christine (2006-07). “Cell and leaf size plasticity in Arabidopsis: what is the role of endoreduplication?”. Plant, Cell & Environment 29 (7): 1273–1283. doi:10.1111/j.1365-3040.2006.01506.x. ISSN 0140-7791. PMID 17080949. https://www.ncbi.nlm.nih.gov/pubmed/17080949. 
  24. ^ Deng WM; Althauser C; Ruohala-Baker H (2001). “Notch-Delta signaling induces a transition from mitotic cell cycle to endocycle in Drosophila follicle cells”. Development 128 (23): 4737–46. PMID 11731454. 
  25. ^ a b Shcherbata HR; Althauser C; Findley SD; Ruohola-Baker H (2004). “The mitotic-to-endocycle switch inDrosophila follicle cells is executed by Notch-dependent regulation of G1/S, G2/M and M/G1 cell-cycle transitions”. Development 131 (13): 3169–81. doi:10.1242/dev.01172. PMID 15175253. 
  26. ^ Schaeffer V; Althauser C; Shcherbata HR; Deng WM; Ruohola-Baker H (2004). “Notch-dependent Fizzy-related/Hec1/Cdh1 expression is required for the mitotic-to-endocycle transition in Drosophila follicle cells”. Current Biology 14 (7): 630–6. doi:10.1016/j.cub.2004.03.040. PMID 15062106. 
  27. ^ Kaushansky K (2005). “The molecular mechanisms that control thrombopoiesis”. The Journal of Clinical Investigation 115 (12): 3339–47. doi:10.1172/JCI26674. PMC: 1297257. PMID 16322778. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1297257/. 
  28. ^ Garcia P; Cales C (1996). “Endoreplication in megakaryoblastic cell lines is accompanied by sustained expression of G1/S cyclins and downregulation of cdc25c”. Oncogene 13 (4): 695–703. PMID 8761290. 
  29. ^ Zhang Y; Wang Z; Ravid K (1996). “The cell cycle in polyploid megakaryocytes is associated with reduced activity of cyclin B1-dependent cdc2 kinase”. Journal of Biological Chemistry 271 (8): 4266–72. doi:10.1074/jbc.271.8.4266. PMID 8626773. 
  30. ^ Su TT; O'Farrell PH (1998). “Chromosome Association of Minichromosome Maintenance Proteins in Drosophila Endoreplication Cycles”. Journal of Cell Biology 140 (3): 451–460. doi:10.1083/jcb.140.3.451. PMC: 2140170. PMID 9456309. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2140170/. 
  31. ^ Arias EE; Walter JC (2004). “Strength in numbers: Preventing rereplication via multiple mechanisms in eukaryotic cells”. Genes & Development 21 (5): 497–518. doi:10.1101/gad.1508907. PMID 17344412. 
  32. ^ Narbonne-Reveau K; Senger S; Pal M; Herr A; Richardson HE; Asano M; Deak P; Lilly MA (2008). “APC/CFzr/Cdh1 promotes cell cycle progression during the Drosophila endocycle”. Development 135 (8): 1451–61. doi:10.1242/dev.016295. PMID 18321983. 
  33. ^ Zielke N; Querings S; Rottig C; Lehner C; Sprenger F (2008). “The anaphase-promoting complex/cyclosome (APC/C) is required for rereplication control in endoreplication cycles”. Genes & Development 22 (12): 1690–1703. doi:10.1101/gad.469108. PMC: 2428065. PMID 18559483. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2428065/. 
  34. ^ Duronio RJ; O'Farrell PH (1995). “Developmental control of the G1 to S transition in Drosophila: Cyclin E is a limiting downstream target of E2F”. Genes & Development 9 (12): 1456–68. doi:10.1101/gad.9.12.1456. PMID 7601350. 
  35. ^ Duronio RJ; O'Farrell PH; Xie JE; Brook A; Dyson N (1995). “The transcription factor E2F is required for S phase during Drosophila embryogenesis”. Genes & Development 9 (12): 1445–55. doi:10.1101/gad.9.12.1445. PMID 7601349. 
  36. ^ Duronio RJ; Bonnette PC; O'Farrell PH (1998). “Mutations of the Drosophila dDP, dE2F, and cyclin E Genes Reveal Distinct Roles for the E2F-DP Transcription Factor and Cyclin E during the G1-S Transition”. Molecular and Cellular Biology 18 (1): 141–151. doi:10.1128/MCB.18.1.141. PMC: 121467. PMID 9418862. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC121467/. 
  37. ^ Shibutani ST; de la Cruz AF; Tran V; Turbyfill WJ; Reis T; Edgar BA; Duronio RJ (2008). “Intrinsic negative cell cycle regulation provided by PIP box- and Cul4Cdt2-mediated destruction of E2f1 during S phase”. Developmental Cell 15 (6): 890–900. doi:10.1016/j.devcel.2008.10.003. PMC: 2644461. PMID 19081076. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2644461/. 
  38. ^ Koepp DM; Schaefer LK; Ye X; Keyomarsi K; Chu C; Harper JW; Elledge SJ (2001). “Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase”. Science 294 (5540): 173–7. doi:10.1126/science.1065203. PMID 11533444. 
  39. ^ Moberg KH; Bell DW; Wahrer DC; Haber DA; Hariharan IK (2001). “Archipelago regulates cyclin E levels in Drosophila and is mutated in human cancer lines”. Nature 413 (6853): 311–6. doi:10.1038/35095068. PMID 11565033. 
  40. ^ de Nooij JC; Graber KH; Hariharan IK (2001). “Expression of cyclin-dependent kinase inhibitor Dacapo is regulated by cyclin E”. Mechanisms of Development 97 (1–2): 73–83. doi:10.1016/S0925-4773(00)00435-4. PMID 11025208. 
  41. ^ Ullah Z; Kohn MJ; Yagi R; Vassilev LT; DePamphilis ML (2008). “Differentiation of trophoblast stem cells into giant cells is triggered by p57/Kip2 inhibition of CDK1 activity”. Genes & Development 22 (21): 3024–36. doi:10.1101/gad.1718108. PMC: 2577795. PMID 18981479. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2577795/. 
  42. ^ Storchova Z; Pellman D (2004). “From polyploidy to aneuploidy, genome instability and cancer”. Nature Reviews Molecular Cell Biology 5 (1): 45–54. doi:10.1038/nrm1276. PMID 14708009. 
  43. ^ “Time and time again: unisexual salamanders (genus Ambystoma) are the oldest unisexual vertebrates”. BMC Evol. Biol. 10: 238. (2010). doi:10.1186/1471-2148-10-238. PMC: 3020632. PMID 20682056. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3020632/. 
  44. ^ a b “Probing the meiotic mechanism of intergenomic exchanges by genomic in situ hybridization on lampbrush chromosomes of unisexual Ambystoma (Amphibia: Caudata)”. Chromosome Res. 18 (3): 371–82. (2010). doi:10.1007/s10577-010-9121-3. PMID 20358399. 


「核内倍加」の続きの解説一覧



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  核内倍加のページへのリンク

辞書ショートカット

すべての辞書の索引

「核内倍加」の関連用語

核内倍加のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



核内倍加のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの核内倍加 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS