効用の可測性
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/08/04 14:00 UTC 版)
しかしながら、効用関数が実在するのか、特に効用の大きさが数値(あるいは金額)として測定できるのか、ということ(可測性の問題)は、当初から議論の対象であり、効用理論のアキレス腱であった。 それに対して、ジョン・ヒックスの「価値の理論」によって、需要の決定で意味をもつのは複数の財の組合せにおけるそれぞれの効用の数値ではなく、複数の財の組合せのあいだの効用の大小関係(選好)であることが周知のこととなった。いいかえれば、同じ無差別曲線が描ける別の効用関数は同一の選好をあらわす。したがって、財の組合せに対して、同一の選好をあらわす効用関数は複数ある。たとえば、2変数の効用関数u = u (x , y ) に対して、単調増加関数y = f (x ) によって変換された効用関数u = f (u (x , y )) は変換前の効用関数と同じ選好をあらわす。 この点でいえば、たとえ限界効用が逓減しなくても、原点に凸な無差別曲線が描ければ、消費者理論においては問題はない。このことは消費者理論において、限界効用逓減と効用の数値が、つまり、効用の可測性の問題が無意味であることとして受け取られた。 しかしながら、ヒックスの業績がひろまる一方で、フォン・ノイマンとオスカル・モルゲンシュテルンが期待効用仮説をとなえ、経済学にふたたび基数的議論を復活させた。世界の事象がある確率分布にもとづいて決定される不確実なものであるとき、人々は効用の期待値を最大化するように行動することが公理として提案された。この期待効用仮説に従うとき、人々の不確実性への態度は効用関数の曲率に依存する。不確実性のない場合、効用関数の増加関数による変換は選好に中立的であった。しかし、期待効用仮説では選好に中立的な変換は、増加関数一般ではなく、線形の増加関数についてしか成り立たない。この場合、限界効用が逓減する効用関数と同一の選好は、同じく限界効用が逓減する効用関数でしかあらわせない。ようするに期待効用仮説は経済学に可測性を復活させたといえる。 期待効用理論において、限界効用の逓減は主体が期待値が同じ事象について、分散がより小さい事象を選好すること、つまり、リスク回避的であることを意味する。
※この「効用の可測性」の解説は、「限界効用」の解説の一部です。
「効用の可測性」を含む「限界効用」の記事については、「限界効用」の概要を参照ください。
- 効用の可測性のページへのリンク