予測の質の評価
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/15 01:42 UTC 版)
自己回帰モデルの予測性能は、クロス・バリデーションが行われるならば、推定の後に即座に評価できる。この方法においては、最初の方の利用可能なデータはパラメーターの推定の為に用いられ、データセットにおける後の方のデータはアウトオブサンプルのテストとして残しておく。他には、パラメーター推定が行われた後にしばらくしたあと、より多くのデータが利用可能になり予測性能を新しいデータを使うことで評価できる。 どちらのケースも、評価可能な予測性能には2つの側面がある。1期先予測の性能と n 期先予測の性能である。1期先予測の性能について、推定パラメーターは予測を行った期以前の全ての期における X の観測値と共に自己回帰方程式が用いられ、方程式の出力は1期先予測となる。この手続きはアウトオブサンプルの観測値についての予測を得るために用いられる。n 期先予測の質を評価する為には、予測を得るために前の節での予測手続きが用いられる。 予測値のセットと対応する様々な期間の X の本当の値のセットが与えられたとして一般的な評価のテクニックは平均二乗予測誤差(英語版)を用いることである。他の尺度もまた用いられる。 ここで測定された予測の正しさをどのように解釈するのかという問題が持ち上がる。例えば平均二乗予測誤差が"高い"(悪い)もしくは"低い"(良い)とはどういう事なのだろうか。比較の上で二つのポイントがある。第一に他のモデルの仮定もしくは推定手法の下で推定された代替モデルの予測の正しさは比較目的に使用できる。第二にアウトオブサンプルの正確さの尺度は十分に前のデータを用いることが出来るならば、つまり最初の p 個のデータポイントを落として p 期以前のデータを使わないならば(パラメーター推定に用いられた)インサンプルのデータポイントでの同じ尺度と比較できる。モデルはインサンプルのデータポイントに出来るだけ適合するように特定化されて推定されるので、普通はアウトオブサンプルの予測性能はインサンプルの予測性能より悪い。しかし予測の質がアウトオブサンプルで(正確には定義できないが)"そう悪くない"のであれば、予測値は十分なパフォーマンスを見せていると言える。
※この「予測の質の評価」の解説は、「自己回帰モデル」の解説の一部です。
「予測の質の評価」を含む「自己回帰モデル」の記事については、「自己回帰モデル」の概要を参照ください。
- 予測の質の評価のページへのリンク