カイパーベルトの形成
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/01/10 07:06 UTC 版)
「ニースモデル」の記事における「カイパーベルトの形成」の解説
外側の惑星の移動は、太陽系外縁天体の存在とその特徴を説明するために必要である。エッジワース・カイパーベルトはかつては天体の個数が多く、またその外縁は 30 au 程度と太陽に近い位置にあったと考えられる。また内縁は天王星と海王星の軌道のすぐ外側にあったと考えられ、これらの惑星が形成された時は現在より太陽にずっと近く (おそらく 15〜20 au の範囲)、また天王星は海王星よりも遠い位置にあったと考えられる。 海王星は惑星間の重力的な遭遇によって外側に散乱され、軌道長半径はおよそ 28 au、軌道離心率は最大で 0.4 の軌道となった。このとき、海王星はその外側の微惑星円盤、すなわちカイパーベルトの中に進入したと考えられる。海王星の軌道離心率が大きいため、海王星との複数の平均運動共鳴を起こす位置はお互いに重なり合い、海王星の軌道と海王星と 2:1 の平均運動共鳴を起こす位置の間の領域にある軌道はカオス的になる。この時点で海王星と微惑星円盤の端との間にいた天体の軌道は、この領域内で安定な、低軌道離心率のより外側の軌道へと進化することが出来た。海王星の軌道離心率が力学的摩擦によって減衰すると、これらの天体はその軌道に捕獲された。これが力学的に「冷たい」カイパーベルトの起源である。後に海王星が低い軌道離心率を保ったまま外側へ移動するにつれ、外側に散乱された天体が海王星との共鳴に捕獲され、古在メカニズムによってこれらの天体の軌道離心率は減少、軌道傾斜角は増加し、安定な高軌道傾斜角の軌道へと脱出することが出来た。その他の天体は共鳴に捕獲された状態に留まり、冥王星族などの共鳴外縁天体の個体群を形成する。これらの2つの天体群は力学的に「熱い」状態であり、大きな軌道傾斜角と軌道離心率を持つ。これは、これらの天体が外側に散乱されていることと、より長い期間にわたって海王星と相互作用していることが原因である。 この海王星の軌道の進化は共鳴に入っているものと入っていないものの2つの天体群、海王星との 2:1 共鳴の位置にある外縁部、元々の微惑星円盤に対する小さな質量を再現する。他の理論モデルでは軌道傾斜角が小さい冥王星族天体を過剰に生成してしまうが、ニースモデルではその問題を回避することが出来る。これはニースモデルでは海王星が外側に散乱されており、海王星との 3:2 共鳴の位置が微惑星円盤の元々の外縁部よりも外に存在することが原因である。異なる初期位置と、外側の円盤に由来する冷たい古典的エッジワース・カイパーベルト天体とそれらの捕獲過程は、これらの天体の軌道傾斜角の二峰性の分布と、その組成との相関を説明することができる。しかしこの海王星の軌道進化は、カイパーベルトの軌道分布の特徴のいくつかを説明することが出来ない。モデルでは古典的エッジワース・カイパーベルト天体の平均離心率が 0.10-0.13 になることが予測されるが、これは実際に観測されている値である 0.07 よりも大きい。また十分な個数の高軌道傾斜角の天体を再現することが出来ない。また、古典的エッジワース・カイパーベルト天体の色の違いは、天体の組成の違いだけではなく天体表面の進化からも部分的に生じることが示唆されているものの、これらの冷たい天体の中に灰色の表面を示す天体が見かけ上完全に欠如していることを説明することが出来ない。 ニースモデルで予測される最も低い軌道離心率を持つ天体が不足していることは、冷たい天体群はその場で形成されたという事を示唆している可能性がある。力学的に熱い天体群と冷たい天体群は、軌道が異なることに加えてその色も異なっている。冷たい天体群は熱い天体群よりも目立って赤い色を示し、異なる組成を持ち異なる領域で形成されたことを示唆している。冷たい天体群は緩く束縛された連星を多く含んでいるが、これらは海王星との近接遭遇で連星として生き残れないだろうと考えられる。冷たい天体群が現在の位置で形成されたとした場合、これを維持するためには海王星の軌道離心率が小さいまま保たれていたか、天王星との相互作用による早い近点移動を経験していなければならない。
※この「カイパーベルトの形成」の解説は、「ニースモデル」の解説の一部です。
「カイパーベルトの形成」を含む「ニースモデル」の記事については、「ニースモデル」の概要を参照ください。
- カイパーベルトの形成のページへのリンク