分数次フーリエ変換とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 分数次フーリエ変換の意味・解説 

分数次フーリエ変換

(Fractional Fourier transform から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/12/25 07:06 UTC 版)

ナビゲーションに移動 検索に移動

数学調和解析の分野において、分数次フーリエ変換(分数階フーリエ変換とも、: fractional Fourier transform, FRFT)とは、フーリエ変換を一般化した一群の線形変換をいい、フーリエ変換の次数が整数でなくなったものと考えることができる。従って、関数を時間領域と周波数領域の「中間」領域に変換することができる。FRFTは、フィルター設計英語版信号解析位相回復英語版パターン認識などに応用される。

FRFTは、分数次の畳み込み相関関数、その他の操作の定義に使うことができ、さらに線形正準変換英語版へと一般化できる。 FRFTの初期の定義はエドワード・コンドン英語版により導入された[1]。この定義は位相空間における回転のグリーン関数を解くことによるものだった。また、ウィーナーエルミート多項式についての仕事[2]を一般化することによる、ナミアスにより導入された定義も存在する[3]

しかし、信号処理の分野において広く認知されるようになったのは、1993年前後にいくつかのグループにより独立に再導入されてからであった[4]。その時から、分数次フーリエ領域に帯域制限された信号にシャノン標本化定理を拡張するという興味が巻き起こった[5][6]

全く異なる「分数次フーリエ変換」の意味がベイリーとシュヴァルツトラウバーにより[7]、本質的にはz変換の別名として、特に離散フーリエ変換を周波数空間で分数量だけシフトして(入力に線形チャープを乗じて)一部の周波数点(スペクトルの一部分だけ)において評価したものに相当する変換を指す用語として導入された(このような変換はブルーシュタインのFFTアルゴリズム英語版により効率的に評価することができる)。しかし、この用語はほとんどの技術的文献では使われなくなり、FRFTに取ってかわられた。以降ではFRFTについて説明する。

導入

関数 ƒ: RC に対する連続フーリエ変換 メディアを再生する

分数次フーリエ変換の次数が 1 のとき、矩形関数sinc関数となる。

フーリエ変換の通常の解釈は、時間領域信号を周波数領域信号へと変換するものである。これに対して、逆フーリエ変換の解釈は周波数領域信号を時間領域信号に変換するものである。見て分かるように、分数次フーリエ変換は(時間領域でも周波数領域でもどちらでもよい)信号を時間と周波数の間の領域の信号へと変換するもの、つまり時間・周波数領域英語版での回転と解釈できる。この見方は線形正準変換英語版により一般化される。この変換は、分数次フーリエ変換を一般化し、時間・周波数領域における回転以外の線形変換を可能とする。

下の図を例にとろう。時間領域信号が(下のとおり)矩形の場合、周波数領域ではsinc関数となる。しかし、分数次フーリエ変換を作用させた場合、矩形信号は時間と周波数の間の領域の信号が得られる。

実際、分数次フーリエ変換は時間周波数分布上の回転操作である。上述の定義から、α = 0 の場合の分数次フーリエ変換では何も変化せず、α = π/2 の場合はフーリエ変換となり、時間周波数分布を π/2 だけ回転させる。α がその他の値の場合、分数次フーリエ変換は時間周波数分布を α だけ回転させる。次の図はさまざまな α の値における分数次フーリエ変換の結果である。

分数次フーリエの時間・周波数分布

応用

分数次フーリエ変換は時間周波数解析や DSP に用いられることがある[12]。ノイズのフィルタリングにも有用だが、ノイズと信号が時間・周波数領域において重ならないことが条件となる。次の例を考えよう。ノイズを除去したいが直接フィルタを適用することができない場合、まず分数次フーリエ変換により(ノイズを含む)信号を回転させる。すると、適切なフィルタを適用することにより欲しい信号のみを通すことができる。したがってノイズは完全に除去される。その後さらに分数次フーリエ変換を適用することにより信号を元にもどせば欲しかった信号が得られる。

分数次フーリエ変換は光学系の設計やホログラフィックストレージの効率最適化に用いられることもある[13]

したがって、時間領域における打ち切り、もしくは同じことだが周波数領域におけるローパスフィルターの適用により、時間・周波数領域の任意の凸包を切り取ることができる。対して、分数次フーリエ変換を使わず時間領域的手法や周波数領域的手法のみを用いる場合、それらの軸に平衡な矩形を切り取ることしかできない。

関連項目

その他の時間・周波数変換:

出典

  1. ^ Condon, E. U. (1937年3月). “Immersion of the Fourier Transform in a Continuous Group of Functional Transformations”. Proc Natl Acad Sci U S A 23 (3): 158–164. ISSN 0027-8424. PMC PMC1076889. https://www.ncbi.nlm.nih.gov/pmc/articles/PMCPMC1076889/. 
  2. ^ Wiener, Norbert (1929年). “Hermitian Polynomials and Fourier Analysis”. Journal of Mathematics and Physics 8 (1-4): 70–73. doi:10.1002/sapm19298170. ISSN 1467-9590. https://doi.org/10.1002/sapm19298170. 
  3. ^ Namias, VICTOR (1980年). “The Fractional Order Fourier Transform and its Application to Quantum Mechanics”. IMA Journal of Applied Mathematics 25 (3): 241–265. doi:10.1093/imamat/25.3.241. http://imamat.oxfordjournals.org/content/25/3/241.abstract. 
  4. ^ Almeida, L. B. (1994年11月). “The fractional Fourier transform and time-frequency representations”. IEEE Transactions on Signal Processing 42 (11): 3084–3091. doi:10.1109/78.330368. ISSN 1053-587X. 
  5. ^ Tao, R.; Deng, B.; Zhang, W. Q.; Wang, Y. (2008年1月). “Sampling and Sampling Rate Conversion of Band Limited Signals in the Fractional Fourier Transform Domain”. IEEE Transactions on Signal Processing 56 (1): 158–171. doi:10.1109/TSP.2007.901666. ISSN 1053-587X. 
  6. ^ Bhandari, A.; Marziliano, P. (2010年3月). “Sampling and Reconstruction of Sparse Signals in Fractional Fourier Domain”. IEEE Signal Processing Letters 17 (3): 221–224. doi:10.1109/LSP.2009.2035242. ISSN 1070-9908. 
  7. ^ Bailey, David H.; Swarztrauber, Paul N. (1991年). “The Fractional Fourier Transform and Applications”. SIAM Review 33 (3): 389–404. doi:10.1137/1033097. https://doi.org/10.1137/1033097. 
  8. ^ Shi, Jun; Zhang, NaiTong; Liu, XiaoPing (2012年). “A novel fractional wavelet transform and its applications”. Science China Information Sciences 55 (6): 1270–1279. doi:10.1007/s11432-011-4320-x. ISSN 1869-1919. https://doi.org/10.1007/s11432-011-4320-x. 
  9. ^ a b Bie, H. De (2008年). “Fourier transform and related integral transforms in superspace”. Journal of Mathematical Analysis and Applications 345 (1): 147–164. arXiv:0805.1918. doi:10.1016/j.jmaa.2008.03.047. ISSN 0022-247X. http://www.sciencedirect.com/science/article/pii/S0022247X08003132. 
  10. ^ Fan, Hong-yi; Hu, Li-yun (2009年). “Optical transformation from chirplet to fractional Fourier transformation kernel”. Journal of Modern Optics 56 (11): 1227–1229. arXiv:0902.1800. doi:10.1080/09500340903033690. https://doi.org/10.1080/09500340903033690. 
  11. ^ Klappenecker, Andreas; Rötteler, Martin (2003年1月). “Engineering functional quantum algorithms”. Phys. Rev. A 67 (1): 010302–010302. arXiv:quant-ph/0208130. doi:10.1103/PhysRevA.67.010302. http://link.aps.org/doi/10.1103/PhysRevA.67.010302. 
  12. ^ Sejdić, Ervin; Djurović, Igor; Stanković, LJubiša (2011年). “Fractional Fourier transform as a signal processing tool: An overview of recent developments”. Signal Processing 91 (6): 1351–1369. doi:10.1016/j.sigpro.2010.10.008. ISSN 0165-1684. http://www.sciencedirect.com/science/article/pii/S0165168410003956. 
  13. ^ Pégard, Nicolas C.; Fleischer, Jason W. (2011年7月). “Optimizing holographic data storage using a fractional Fourier transform”. Opt. Lett. 36 (13): 2551–2553. doi:10.1364/OL.36.002551. http://ol.osa.org/abstract.cfm?URI=ol-36-13-2551. 

外部リンク

参考文献




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

カテゴリ一覧

すべての辞書の索引



Weblioのサービス

「分数次フーリエ変換」の関連用語






分数次フーリエ変換のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



分数次フーリエ変換のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの分数次フーリエ変換 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS