関連すること
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/26 01:06 UTC 版)
チャーン・サイモンズ理論との関係 エドワード・ウィッテン が初めて示したように、与えられた結び目 γ の ジョーンズ多項式は、ゲージ群 を SU(2) とした三次元球面の チャーン・サイモンズ理論 を考えて、γ に付随したウィルソンループ WF(γ)(F は SU(2) の基本表現)の真空期待値を計算することで得られる。 量子不変量との関係 ジョーンズ多項式 V(K) の不定元 t に e h {\displaystyle e^{h}} を代入して h で展開すると、各 hn の係数はヴァシリエフ(Vassiliev)不変量になる。マキシム・コンツェビッチはヴァシリエフ不変量を統一する結び目不変量コンツェビッチ積分を構成した。このコンツェビッチ積分の値(ヤコビ図式と呼ばれる 1,3-価グラフの無限和)に sl2 ウェイトシステム(ドロール・バー-ナタン(英語版)(Dror Bar-Natan))が理論的に整備した)を適用するとジョーンズ多項式が復元する。 補空間の体積との関係 カシャエフ(R.M.Kashaev)はいくつかの双曲結び目について数値実験を行い、N 次元表現に対応する色付きジョーンズ多項式のパラメータに 1の N 乗根を代入して N に関してある極限をとると、これらの結び目の補空間の双曲体積が得られることを発見した。村上順はこれをもとに、一般の結び目にたいしても同様に色付きジョーンズ多項式のある極限から補空間の体積が得られると予想した。(体積予想参照) コバノフホモロジーとの関係 1990年代から 2000年代にかけてミハイル・コバノフ(英語版)は絡み目の図式に対して鎖複体を構成し、導かれるホモロジーが絡み目の不変量であることを示した(コバノフホモロジー)。ジョーンズ多項式はこのホモロジーのオイラー標数として表される。
※この「関連すること」の解説は、「ジョーンズ多項式」の解説の一部です。
「関連すること」を含む「ジョーンズ多項式」の記事については、「ジョーンズ多項式」の概要を参照ください。
- 関連することのページへのリンク