発散と収束の境界線
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/08/23 03:44 UTC 版)
調和級数に関する上記の例から、単調減少列 f(n) であって、 lim n → ∞ f ( n ) 1 / n = 0 and lim n → ∞ f ( n ) 1 / n 1 + ε = ∞ {\displaystyle \lim _{n\to \infty }{\frac {f(n)}{1/n}}=0\quad {\text{and}}\quad \lim _{n\to \infty }{\frac {f(n)}{1/n^{1+\varepsilon }}}=\infty } という意味で 1/n よりも速く 0 に収束するが、 任意の ε > 0 に対して 1/n1+ε よりは遅く 0 に収束し、 対応する級数はなおも発散する ようなものは存在するかという問題が持ち上がる。もしそのような級数が見つかれば、1/n を f(n) に取り換えて同じことを問うことができ、以下同様の議論が続けられる。このようにして級数の発散と収束の境界線を探究することができる。 具体的には、全ての自然数 k に対して級数 ∑ n = N k ∞ 1 n ln ( n ) ln 2 ( n ) ⋯ ln k − 1 ( n ) ln k ( n ) {\displaystyle \sum _{n=N_{k}}^{\infty }{\frac {1}{n\ln(n)\ln _{2}(n)\cdots \ln _{k-1}(n)\ln _{k}(n)}}} (4) は発散する一方、 ∑ n = N k ∞ 1 n ln ( n ) ln 2 ( n ) ⋯ ln k − 1 ( n ) ( ln k ( n ) ) 1 + ε {\displaystyle \sum _{n=N_{k}}^{\infty }{\frac {1}{n\ln(n)\ln _{2}(n)\cdots \ln _{k-1}(n)(\ln _{k}(n))^{1+\varepsilon }}}} (5) は全ての ε > 0 に対し収束することが示せる(証明は後述)。ここで lnk は自然対数の k-重の合成を表し、再帰的に ln k ( x ) = { ln ( x ) for k = 1 , ln ( ln k − 1 ( x ) ) for k ≥ 2. {\displaystyle \ln _{k}(x)={\begin{cases}\ln(x)&{\text{for }}k=1,\\\ln(\ln _{k-1}(x))&{\text{for }}k\geq 2.\end{cases}}} と定義される。また Nk は、lnk(Nk) ≥ 1 の左辺が well-defined で、かつこの不等式を満たす、つまり N k ≥ e e ⋅ ⋅ e ⏟ k e ′ s = e ↑↑ k {\displaystyle N_{k}\geq \underbrace {e^{e^{\cdot ^{\cdot ^{e}}}}} _{k\ e'{\text{s}}}=e\uparrow \uparrow k} となる最小の自然数を表す。ここで矢印記法はテトレーションである(クヌースの矢印表記の一種)。 級数 (4) が発散することを証明する。連鎖律を繰り返し適用して、 d d x ln k + 1 ( x ) = d d x ln ( ln k ( x ) ) = 1 ln k ( x ) d d x ln k ( x ) = ⋯ = 1 x ln ( x ) ⋯ ln k ( x ) {\displaystyle {\frac {d}{dx}}\ln _{k+1}(x)={\frac {d}{dx}}\ln(\ln _{k}(x))={\frac {1}{\ln _{k}(x)}}{\frac {d}{dx}}\ln _{k}(x)=\cdots ={\frac {1}{x\ln(x)\cdots \ln _{k}(x)}}} だから ∫ N k ∞ d x x ln ( x ) ⋯ ln k ( x ) = ln k + 1 ( x ) | N k ∞ = ∞ . {\displaystyle \int _{N_{k}}^{\infty }{\frac {dx}{x\ln(x)\cdots \ln _{k}(x)}}=\ln _{k+1}(x){\bigr |}_{N_{k}}^{\infty }=\infty .} となり、積分判定法を用いれば発散することが分かる。 級数 (5) が収束することを証明する。連鎖律および上記の結果により − d d x 1 ε ( ln k ( x ) ) ε = 1 ( ln k ( x ) ) 1 + ε d d x ln k ( x ) = ⋯ = 1 x ln ( x ) ⋯ ln k − 1 ( x ) ( ln k ( x ) ) 1 + ε {\displaystyle -{\frac {d}{dx}}{\frac {1}{\varepsilon (\ln _{k}(x))^{\varepsilon }}}={\frac {1}{(\ln _{k}(x))^{1+\varepsilon }}}{\frac {d}{dx}}\ln _{k}(x)=\cdots ={\frac {1}{x\ln(x)\cdots \ln _{k-1}(x)(\ln _{k}(x))^{1+\varepsilon }}}} だから ∫ N k ∞ d x x ln ( x ) ⋯ ln k − 1 ( x ) ( ln k ( x ) ) 1 + ε = − 1 ε ( ln k ( x ) ) ε | N k ∞ < ∞ {\displaystyle \int _{N_{k}}^{\infty }{\frac {dx}{x\ln(x)\cdots \ln _{k-1}(x)(\ln _{k}(x))^{1+\varepsilon }}}=-{\frac {1}{\varepsilon (\ln _{k}(x))^{\varepsilon }}}{\biggr |}_{N_{k}}^{\infty }<\infty } となり、(1) から級数 (5) は上に有界であることが分かる。
※この「発散と収束の境界線」の解説は、「積分判定法」の解説の一部です。
「発散と収束の境界線」を含む「積分判定法」の記事については、「積分判定法」の概要を参照ください。
- 発散と収束の境界線のページへのリンク