テトレーション
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/06/30 07:54 UTC 版)
テトレーション(英: tetration)とは、冪乗の次となる4番目のハイパー演算である。つまり、自らの冪乗を指定された回数反復する二項演算である。超冪(ちょうべき)ともいう。テトレーションという語はルーベン・グッドスタインによって、「4」を意味する接頭辞 tetra- と「繰り返し」を意味する iteration から作り出された[1]。
定義
テトレーション
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/10/09 09:27 UTC 版)
「クヌースの矢印表記」の記事における「テトレーション」の解説
ここでクヌースは、二重矢印をテトレーション(指数計算の反復)を表す演算子として定義した。 a ↑↑ b = a ↑ a ↑ ⋯ ↑ a ⏟ b copies of a = a a . . . a ⏟ b copies of a {\displaystyle a\uparrow \uparrow b=\underbrace {a\uparrow a\uparrow \cdots \uparrow a} _{b{\text{ copies of }}a}=\underbrace {a^{a^{{}^{.\,^{.\,^{.\,^{a}}}}}}} _{b{\text{ copies of }}a}} これを用いると、 2 ↑↑ 2 = 2 2 = 4 2 ↑↑ 3 = 2 2 2 = 2 4 = 16 2 ↑↑ 4 = 2 2 2 2 = 2 2 4 = 2 16 = 65536 2 ↑↑ 5 = 2 2 2 2 2 = 2 2 16 = 2 65536 ≈ 2.003 × 10 19728 {\displaystyle {\begin{aligned}2\uparrow \uparrow 2&=2^{2}=4\,\\2\uparrow \uparrow 3&=2^{2^{2}}=2^{4}=16\,\\2\uparrow \uparrow 4&=2^{2^{2^{2}}}=2^{2^{4}}=2^{16}=65536\,\\2\uparrow \uparrow 5&=2^{2^{2^{2^{2}}}}=2^{2^{16}}=2^{65536}\approx 2.003\times 10^{19728}\end{aligned}}} 3 ↑↑ 2 = 3 3 = 27 {\displaystyle 3\uparrow \uparrow 2=3^{3}=27} 3 ↑↑ 3 = 3 3 3 = 3 27 = 7625597484987 {\displaystyle 3\uparrow \uparrow 3=3^{3^{3}}=3^{27}=7625597484987} 3 ↑↑ 4 = 3 3 3 3 = 3 3 27 = 3 7625597484987 ≈ 1.258 × 10 3638334640024 {\displaystyle 3\uparrow \uparrow 4=3^{3^{3^{3}}}=3^{3^{27}}=3^{7625597484987}\approx 1.258\times 10^{3638334640024}} 10 ↑↑ 3 = 10 10 10 = 10 10000000000 {\displaystyle 10\uparrow \uparrow 3=10^{10^{10}}=10^{10000000000}} (10の100億乗) 10 ↑↑ 4 = 10 10 10 10 = 10 10 10000000000 {\displaystyle 10\uparrow \uparrow 4=10^{10^{10^{10}}}=10^{10^{10000000000}}} などと書ける。
※この「テトレーション」の解説は、「クヌースの矢印表記」の解説の一部です。
「テトレーション」を含む「クヌースの矢印表記」の記事については、「クヌースの矢印表記」の概要を参照ください。
- テトレーションのページへのリンク