環論
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/04/17 23:16 UTC 版)
![]() |
この記事は英語版の対応するページを翻訳することにより充実させることができます。(2024年5月)
翻訳前に重要な指示を読むには右にある[表示]をクリックしてください。
|
代数的構造 → 環論 環論 |
---|
数学において、環論(かんろん、英: ring theory)は、環(加法と乗法が定義され、整数の持つ性質とよく似た性質を満足する代数的構造である)を研究する学問分野である。環論の研究対象となるのは、環の構造や環の表現(環上の加群)などについての一般論、および(群環、可除環、普遍展開環などの)具体的な特定の環のクラスあるいは理論と応用の両面で興味深い様々な環の性質(たとえばホモロジー的性質や多項式の等式)などである。
可換環は非可換の場合と比べてその性質はよく調べられている。可換環の自然な例を多く提供する代数幾何学や代数的数論は可換環論の発展の大きな原動力であった。この二つは可換環に密接に関係する分野であるから、一般の環論の一部というよりは、可換環論や可換体論の一部と考えるほうが普通である。
非可換環は可換の場合と比べて奇妙な振る舞いをすることが多くあるので、その理論は可換環論とは極めて毛色の異なったものとなる。非可換論は、それ自身の独自の方法論を用いた発展をする一方で、可換環論の方法論に平行する形で(仮想的な)「非可換空間」上の函数環として幾何学的な方法である種の非可換環のクラスを構築するという方法論が新興している。このような傾向は1980年代の非可換幾何学の発展と量子群の発見に始まる。こうした新たなパラダイムは、非可換環(特に非可換ネーター環)のよりよい理解を導くこととなった (Goodearl 1989)。
歴史
可換環論は代数的数論、代数幾何、不変式論などを起源に持つ。これらの主題の発展に中心的な役割を果たしたのは代数体の整数環、代数函数体、多変数多項式環などである。非可換環論は複素数の概念を拡張した様々な超複素数系を獲得しようとする試みとして始まった。可換環論および非可換環論の起源は19世紀初頭にまで遡ることができるが、分野として成熟するのは1920年代を迎えるころである。
より詳細には、ウィリアム・ローワン・ハミルトンが四元数および複四元数 (biquaternion) を発見し、ジェームズ・クックルがテッサリン (tessarine) および双対四元数 (coquaternion) を提案し、ウィリアム・キングドン・クリフォードは「代数的運動子」(algebraic motors) と彼自身は呼んだ分解型複四元数を熱狂的に信奉した。これらの非可換環および非結合的リー環は、かつてはそれぞれ特定の数学的構造として別々の主題として扱われたけれども、普遍代数学のもとで一貫した研究が進められた。こうした再編の証の一つは、これらの代数的構造を記述するのに、直和分解を考えるのが有効なことである。
ウェダーバーン (1908) とアルティン (1928) によって、多くの超複素数系が行列環として記述できることが示されている。ウェダーバーンの構造定理は体上有限階の多元環に対するもので、アルティンはそれをより一般のアルティン環に対して一般化した。
基本的な定義と導入
厳密にいうと、環とはアーベル群 (R, +) に第二の二項演算 * で、任意の a, b, c ∈ R に対して
- History of ring theory at the MacTutor Archive
- R.B.J.T. Allenby (1991). Rings, Fields and Groups. Butterworth-Heinemann. ISBN 0-340-54440-6
- Atiyah M. F., Macdonald, I. G., Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1969 ix+128 pp.
- T.S. Blyth and E.F. Robertson (1985). Groups, rings and fields: Algebra through practice, Book 3. Cambridge university Press. ISBN 0-521-27288-2
- Faith, Carl, Rings and things and a fine array of twentieth century associative algebra. Mathematical Surveys and Monographs, 65. American Mathematical Society, Providence, RI, 1999. xxxiv+422 pp. ISBN 0-8218-0993-8
- Goodearl, K. R., Warfield, R. B., Jr., An introduction to noncommutative Noetherian rings. London Mathematical Society Student Texts, 16. Cambridge University Press, Cambridge, 1989. xviii+303 pp. ISBN 0-521-36086-2
- Herstein, I. N., Noncommutative rings. Reprint of the 1968 original. With an afterword by Lance W. Small. Carus Mathematical Monographs, 15. Mathematical Association of America, Washington, DC, 1994. xii+202 pp. ISBN 0-88385-015-X
- Nathan Jacobson, Structure of rings. American Mathematical Society Colloquium Publications, Vol. 37. Revised edition American Mathematical Society, Providence, R.I. 1964 ix+299 pp.
- Nathan Jacobson, The Theory of Rings. American Mathematical Society Mathematical Surveys, vol. I. American Mathematical Society, New York, 1943. vi+150 pp.
- “Abstract Algebra: Theory and Applications” (英語) (1997年). 2019年1月2日閲覧。 An introductory undergraduate text in the spirit of texts by Gallian or Herstein, covering groups, rings, integral domains, fields and Galois theory. Free downloadable PDF with open-source GFDL license.
- Lam, T. Y., A first course in noncommutative rings. Second edition. Graduate Texts in Mathematics, 131. Springer-Verlag, New York, 2001. xx+385 pp. ISBN 0-387-95183-0
- Lam, T. Y., Exercises in classical ring theory. Second edition. Problem Books in Mathematics. Springer-Verlag, New York, 2003. xx+359 pp. ISBN 0-387-00500-5
- Lam, T. Y., Lectures on modules and rings. Graduate Texts in Mathematics, 189. Springer-Verlag, New York, 1999. xxiv+557 pp. ISBN 0-387-98428-3
- McConnell, J. C.; Robson, J. C. Noncommutative Noetherian rings. Revised edition. Graduate Studies in Mathematics, 30. American Mathematical Society, Providence, RI, 2001. xx+636 pp. ISBN 0-8218-2169-5
- Pierce, Richard S., Associative algebras. Graduate Texts in Mathematics, 88. Studies in the History of Modern Science, 9. Springer-Verlag, New York-Berlin, 1982. xii+436 pp. ISBN 0-387-90693-2
- Rowen, Louis H., Ring theory. Vol. I, II. Pure and Applied Mathematics, 127, 128. Academic Press, Inc., Boston, MA, 1988. ISBN 0-12-599841-4, ISBN 0-12-599842-2
- Connell, Edwin, Free Online Textbook, http://www.math.miami.edu/~ec/book/
日本語教科書
- 東屋五郎:「單純環の代數的理論」、河出書房(1951年).
- 中山正、東屋五郎:「代數學 II:環論」、岩波書店 (1954年4月15日).
- 中井喜和:「可換環と微分」、共立出版(1973年7月20日)。
- 永田雅宜:「可換環論」、紀伊國屋書店(紀伊國屋数学叢書 1)(1974年7月15日)。
- マッコイ、九野昇司(訳):「環論:増補改訂版」、内田老鶴圃(1987年4月10日)。※ 増補改訂前の初版は1975年3月1日。
- 酒井文雄:「環と体の理論」、共立出版(共立講座21世紀の数学 8)、ISBN 4-320-01560-6 (1997年2月25日)。
- 岩永恭雄、佐藤眞久:「環と加群のホモロジー代数的理論」、日本評論社、ISBN 4-535-78367-5 (2002年10月15日)。
- 堀田良之:「可換体と体」、岩波書店、ISBN 4-00-005198-9 (2006年6月9日)。
- 谷崎俊之:「非可換体」、岩波書店、ISBN 4-00-005875-4 (2006年7月7日)。
- 後藤四郎、渡辺敬一:「可換環論」、日本評論社、ISBN 978-4-535-78309-6 (2011年9月30日)。
- 新妻弘:「可換環論の様相:クルルの定理と正則局所環」、近代科学社、ISBN 978-4-7649-0554-2 (2017年12月31日)。
「環論」の例文・使い方・用例・文例
固有名詞の分類
- >> 「環論」を含む用語の索引
- 環論のページへのリンク