温度増加による粘弾性緩和
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/11/19 01:18 UTC 版)
一般に、引張弾性率 E はポリマーの温度に依存し、σ は温度 T とともに減少する。この減少を粘弾性緩和(英: viscoelastic relaxation、あるいは単に緩和)という。温度増加に伴うEの変化過程にはガラス状領域(glassy state)、転移領域(leathery state)、ゴム状平坦領域(rubbery plateau)、流動領域の4つの段階がある。転移領域では E は1~数GPaと大きく変化しない。転移領域になると E は数MPaまで急激に減少する。ガラス状領域から転移領域への変化をガラス転移 (glass transition) といい、これが起こる温度をガラス転移点 (Tg) という。転移領域ではポリマーは皮革状 (leathery) である。ゴム状平坦領域では E は数MPaで一定となり温度に依存せず、ポリマーはゴム状となる。分子量が大きいポリマー、結晶性ポリマー、架橋ポリマーではこの領域が長くなり、より高い温度まで続く。流動領域では温度増加に伴い E は急激に減少し、ポリマーは高粘度の流動性を示す。 粘弾性緩和の原因は各温度で高分子鎖の分子運動 (molecular motion) が異なるためである。ガラス状領域では高分子のミクロブラウン運動は凍結している。ガラス転移時には、凍結されていた分子運動は局所的に開放され、セグメントのミクロブラウン運動が始まる。流動領域では高分子の絡み合いがほぐれ始め、分子鎖の運動が激しく起こる。分子鎖間の相対位置を変化させるマクロブラウン運動が起こり始め、ポリマーは流動性となる。 ガラス領域と転移領域における粘弾性の挙動は、分子量がある臨界値より大きければ分子量と分子量分布に依存しない。転移領域における速い緩和は、分子全体ではなく分子の一部分の運動に関連しているためである。一方、ゴム状平坦領域と流動領域における挙動は分子量と分子量分布の影響を受ける。分子量が低い非晶性ポリマーでは、転移領域から流動領域への遷移が急激である。架橋ポリマーではゴム弾性により弾性率は温度の増加で僅かに増加するが、架橋の熱分解が起こるまで架橋ポリマーは流動しない。熱分解まで弾性率の低下は観測されない。この分子量・分子量分布依存性は、転移領域から流動領域への遅い緩和が分子全体の運動に依存していることによる。
※この「温度増加による粘弾性緩和」の解説は、「重合体」の解説の一部です。
「温度増加による粘弾性緩和」を含む「重合体」の記事については、「重合体」の概要を参照ください。
- 温度増加による粘弾性緩和のページへのリンク