混成軌道と原子価状態
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/10/03 06:22 UTC 版)
炭素の基底状態の電子配置は[He] 2s22p2である。そうすると原子価状態の軌道関数の特性から炭素の結合には2s軌道に帰結するものと、2p軌道に帰結するものの2種類存在することが示唆される。しかし、実際にはダイヤモンドの結晶構造やメタンの構造からは1種類の結合しか存在しないと考えられる。 元々、原子価結合法では水素分子の全電子の状態を表す際に、原子軌道の状態の重ね合わせを原子軌道の一次結合で定式化した。この場合も原子価状態の軌道関数も、2s軌道と2p軌道の重ね合わせで生成する混成軌道関数で定式化することが可能である。そして実際には、混成軌道関数で表される原子価状態は共有結合の方向性とも矛盾しない。 混成軌道の定式化には色々な組み合わせが可能であり、生成した混成軌道は基となった原子軌道(s軌道、p軌道)の名称を使って、sp3軌道(関数)、sp2軌道(関数)、sp軌道(関数)、spd軌道(関数)と呼ばれる。 そして、重ね合わせが可能になるためには原子軌道のエネルギー準位が同程度であることが必要な為、もっぱら主量子数が同じ原子軌道間で混成軌道が生成する。そしてd軌道などについては同一主量子数の軌道よりも、1つ主量子数が大きい原子軌道の方がエネルギー準位差が小さいのでそちらの方の原子軌道と混成することもある。 このように第2周期以降の原子は複数の混成軌道を取ることができ、有機分子や金属錯体などの分子構造の多様性をもたらしている。しかし実際の分子では必ずしも理論的な混成軌道とは異なる結合角を取る場合も多く、非共有電子対が混成軌道に及ぼす立体的な影響は原子価殻電子対反発則として知られている。
※この「混成軌道と原子価状態」の解説は、「混成軌道」の解説の一部です。
「混成軌道と原子価状態」を含む「混成軌道」の記事については、「混成軌道」の概要を参照ください。
- 混成軌道と原子価状態のページへのリンク