共振変圧器の原理に基づく昇圧
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/01/06 06:03 UTC 版)
「テスラコイル」の記事における「共振変圧器の原理に基づく昇圧」の解説
大きな巻線比(変成比)のトランスによって高電圧を得ようとした場合、一次-二次コイル間の絶縁の都合上、また、コイルの構造上、結合係数は低くならざるを得ない。そのため、一般に一次コイルと二次コイルとに鎖交する相互磁束(主磁束)を形成することが困難で、漏れインダクタンスが大きくなるとともに相互インダクタンスが小さくなり過ぎて電力の伝達が悪くなる。一方、トランスの二次コイルに電流が流れるとそれによって磁界が発生するが、二次側の系が共振状態にあるときは、二次コイルには反共振(並列共振 1)と共振(直列共振 1')が対になって現れる。このうちの共振周波数(直列共振周波数 1')で一次コイルを駆動すると一次側回路側の誘導性インピーダンスが激減し、二次コイルの共振電流が発生する磁界と一次コイルが発生する磁束の磁界の位相が同期して磁界調相の状態になる。これは一次コイルの発生する磁束が二次コイルに引き込まれて一次-二次間に非常に強い結合が生じる現象であり、この状態になると相互磁束(主磁束)が大幅に増加し、鉄心などにより磁束を閉じ込める工夫をすること無く高い結合効果を得ることが出来る。すなわち一次コイルに与える電圧の周波数が二次側系の共振周波数であれば、本来トランスは単に一次、二次のコイルを適当に近くに設置した程度の状態でも効率よく電力が伝達できる。また、短絡インダクタンスLsと二次側浮遊容量Csとの共振で起きる磁界調相結合によって昇圧効果も期待できる。テスラコイルでは一次側に与えるこの共振周波数の交流電圧を得るために回転型Gapを用いる。この回転型Gapによって火花放電のインパルス電流を発生させ、広帯域の交流を共振回路に与えて振動させている。また、回転型Gapの回転数を調整することにより一次コイルに与える周波数の調整を実現している。 尚、テスラコイルでは共振要素の相当部分が浮遊容量なので共振周波数が不安定であり、設置状況などにより周波数を調整する必要がある。この欠点を克服するため、SSTCでは二次コイルのGND側に発生するコイル電流の位相をもとに一次コイルを駆動する方法(電流共振駆動)を行って放電効果を安定化させている。
※この「共振変圧器の原理に基づく昇圧」の解説は、「テスラコイル」の解説の一部です。
「共振変圧器の原理に基づく昇圧」を含む「テスラコイル」の記事については、「テスラコイル」の概要を参照ください。
- 共振変圧器の原理に基づく昇圧のページへのリンク